AKADEMIA GORNICZO-HUTNICZA
A G H IM. STANISEAWA STASZICA W KRAKOWIE

Procesory i Architektura
Systemow Komputerowych

Historia rozwoju

IET

Katedra Elektroniki
Krakow 2015

dr inz. Roman Rumian

mJJ Wzrost liczby instrukcji x86 w czasie

1000

900
800 /
700

600
500
400
300
200
100 -

0IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

D O O o % q o 9
SO ng P ng RS ng & ng \Q,ca & %QQ NN

Number of Instructions

Year

m 1978: The Intel 8086 architecture was announced as an assembly language-compatible
extension of the then successful Intel 8080, an 8-bit microprocessor. The 8086 is a 16-bit
architecture, with all internal registers 16 bits wide. Unlike MIPS, the registers have dedicated
uses, and hence the 8086 is not considered a general-purpose register architecture.

AGH m 1980: The Intel 8087 floating-point coprocessor is announced. This architecture extends the
8086 with about 60 floating-point instructions. Instead of using registers, it relies on a stack
(see Section 2.21 and Section 3.7).

m 1982: The 80286 extended the 8086 architecture by increasing the address space to 24 bits,
by creating an elaborate memory-mapping and protection model (see Chapter 5), and by adding
a few instructions to round out the instruction set and to manipulate the protection model.

m 1985: The 80386 extended the 80286 architecture to 32 bits. In addition to a 32-bit
architecture with 32-bit registers and a 32-bit address space, the 80386 added new addressing
modes and additional operations. The added instructions make the 80386 nearly a general-
purpose register machine. The 80386 also added paging support in addition to segmented
addressing (see Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs
without change.

m 1989-95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium Pro in 1995 were
aimed at higher performance, with only four instructions added to the user-visible instruction
set: three to help with multiprocessing (Chapter 6) and a conditional move instruction.

m 1997: Aft er the Pentium and Pentium Pro were shipping, Intel announced that it would
expand the Pentium and the Pentium Pro architectures with MMX (Multi Media Extensions). This
new set of 57 instructions uses the floating point stack to accelerate multimedia and
communication applications. MMX instructions typically operate on multiple short data elements
at a time, in the tradition of single instruction, multiple data (SIMD) architectures (see Chapter
6). Pentium II did not introduce any new instructions.

m 1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD Extensions) as part
of Pentium III. The primary changes were to add eight separate registers, double their width to
128 bits, and add a single precision floating-point data type. Hence, four 32-bit floating-point
operations can be performed in parallel. To improve memory performance, SSE includes cache
prefetch instructions plus streaming store instructions that bypass the caches and write directly
to memory.

m 2001: Intel added yet another 144 instructions, this time labeled SSE2. Th e new data type is
double precision arithmetic, which allows pairs of 64-bit floating-point operations in parallel.
Almost all of these 144 instructions are versions of existing MMX and SSE instructions that

oierate on 64 bits of data in iarallel.

in parallel. Not only does this change enable more multimedia operations; it gives the compiler
a different target for floating-point operations than the unique stack architecture. Compilers
can choose to use the eight SSE registers as floating-point registers like those found in other
computers. This change boosted the floating-point performance of the Pentium 4, the fi rst
AGH microprocessor to include SSE2 instructions.
m 2003: A company other than Intel enhanced the x86 architecture this time. AMD announced
a set of architectural extensions to increase the address space from 32 to 64 bits. Similar to
the transition from a 16- to 32-bit address space in 1985 with the 80386, AMD64 widens all
registers to 64 bits. It also increases the number of registers to 16 and increases the number
of 128- bit SSE registers to 16. The primary ISA change comes from adding a new mode
called long mode that redefines the execution of all x86 instructions with 64-bit addresses and
data. To address the larger number of registers, it adds a new prefix to instructions.
Depending how you count, long mode also adds four to ten new instructions and drops 27 old
ones. PC-relative data addressing is another extension. AMD64 still has a mode that is
identical to x86 (legacy mode) plus a mode that restricts user programs to x86 but allows
operating systems to use AMD64 (compatibility mode). These modes allow a more graceful
transition to 64-bit addressing than the HP/Intel IA-64 architecture.
m 2004: Intel capitulates and embraces AMD64, relabeling it Extended Memory 64 Technology
(EM64T). The major difference is that Intel added a 128-bit atomic compare and swap
instruction, which probably should have been included in AMD64. At the same time, Intel
announced another generation of media extensions. SSE3 adds 13 instructions to support
complex arithmetic, graphics operations on arrays of structures, video encoding, floating-point
conversion, and thread synchronization (see Section 2.11). AMD added SSE3 in subsequent
chips and the missing atomic swap instruction to AMD64 to maintain binary compatibility with
Intel.
m 2006: Intel announces 54 new instructions as part of the SSE4 instruction set extensions.
These extensions perform tweaks like sum of absolute differences, dot products for arrays of
structures, sign or zero extension of narrow data to wider sizes, population count, and so on.
They also added support for virtual machines (see Chapter 5).
m 2007: AMD announces 170 instructions as part of SSE5, including 46 instructions of the
base instruction set that adds three operand instructions like MIPS.
m 2011: Intel ships the Advanced Vector Extension that expands the SSE register width from
128 to 256 bits, thereby redefining about 250 instructions and adding 128 new instructions.

oy ——
()
€

Name Use
3 0

EAX GPR O

ECX GPR1

EDX GPR 2

EBX GPR3 Rejestry 80386

ESP GPR 4

EBP GPR. 5

ESI GPR. 6

EDI GPR T
Cs Code segment pointer
sSs Stack segment pointer (top of stack)
DS Data segment pointer 0
ES Data segment pointer 1
FS Data segment pointer 2
GS Data segment pointer 3

EIP Instruction pointer (PC)

EFLAGS Condition codes

——p—

Hardware

or software
component | Affects what?

CPU execution time for a program Seconds for the program
Instruction count Instructions executed for the program CPU time = ITIStI‘I.lCﬂﬂTl count X CPI
Clock cycles per instruction {CPI) Average number of clock cycles per instruction C]ﬂ‘:k I'ﬂtE
Clock cycle time Seconds per clock cycle
Instruction count

MIPS = -
Execution time X 10

Algorithm Instruction count,
possibly CPI

The algorithm determines the number of source program

instructions executed and hence the number of processor Instruction count _ Clock rate

instructions executed. The algorithm may also affect the CPI,
by favoring slower or faster instructions. For example, if the

MIPS =

Instruction count X CPI % 10° B CPI X 10°

algorithm uses more divides, it will tend to have a higher CP!. Clock rate

Programming | Instruction count,

The programming language certainly affects the instruction
count, since statements in the language are translated to

processor instructions, which determi
language may also affect the CPI bec:
example, a language with heavy supp
(e.g., Java) will require indirect calls, v
instructions.

language CPI
Compiler Instruction count,
CPI

The efficiency of the compiler affects
count and average cycles per instruct
determines the translation of the sou
into computer instructions. The comp
complex and affect the CPI in comple

Instruction set | Instruction count,
architecture clock rate, CPI

Execution time is the only valid and unimpeachable measure of
performance. Many other metrics have been proposed and found wanting.
Sometimes these metrics are flawed from the start by not reflecting
execution time; other times a metric that is valid in a limited context
is extended and used beyond that context or without the additional
clarification needed to make it valid.

The instruction set architecture affects all three aspects or
CPU performance, since it affects the instructions needed for a
function, the cost in cycles of each instruction, and the overall

clock rate of the processor.

mmm CPI of Intel Core i7 920 running
AT SPEC2006 integer benchmarks.

3""'_““"_"','“_““'_' """""""""""""""
Stalls, misspeculation

2 67

m Ideal CPI
< R e S

2.12
2_ __
o R
5 1.5
1.23
1_ __
07a 077 0.82

059 061 0

'[].5“':144—‘ N BN N BN BN N BN B e B B

What for is the processor clock?

State "“\ State
element ——{(Combinational logic | element
1 /_’ 2

Clock cycle —

AGH

€ A superscalar processor is one in which multiple independent instruction
pipelines are used. Each pipeline consists of multiple stages, so that each
pipeline can handle multiple instructions at a time. Multiple pipelines introduce
a new level of parallelism, enabling multiple streams of instructions to

be processed at a time. A superscalar processor exploits what is known

as instruction-level parallelism, which refers to the degree to which the
instructions of a program can be executed in parallel.

@ A superscalar processor typically fetches multiple instructions at a time and
then attempts to find nearby instructions that are independent of one another
and can therefore be executed in parallel. If the input to one instruction
depends on the output of a preceding instruction, then the latter instruction
cannot complete execution at the same time or before the former instruction.
Once such dependencies have been identified, the processor may issue

and complete instructions in an order that differs from that of the original
machine code.

€ The processor may eliminate some unnecessary dependencies by the use of
additional registers and the renaming of register references in the original
code.

€ Whereas pure RISC processors often employ delayed branches to maximize
the utilization of the instruction pipeline, this method is less appropriate to

a superscalar machine. Instead, most superscalar machines use traditional
branch prediction methods to improve efficiency.

3 E
) = =
- = —
I § I R
3 .-_H_.i.ﬂv O I.a.._ = m
7 R = 5 = @
Pt =" 7 =
_.L..... O - = -
e = (= =
T T T T e T BSS | [— L
L) ¥ 5] 73]
g —
=
=
=
=
U7 WSS [T T T b 4 4 - St
* 5%
o
PR I " -+ 4 I N P, . I _
m \m I
b |
x

SUGIIDTLIIS UL 3415 S0

Comparison of Superscalar and Superpipeline Approaches

=1

0

Time in base cyeles

Pierwsza wersja ukiadu mnozacego

;E
I S

e
Multiplicand
Shift left J-«—
_l 154 bits
.
\/ .
_ Multiplier
64-bit ALU Shift right |-e—
32 bits

Product 347
Control test
Write

64 bits

Idea szybkiego ukitadu mnozacego

>
()
T —

Mplier31 » Mcand Mplier30 » Mcand MplrerEEl * Mcand Mpll&rEﬂ * Mcand Mplier3 = Mcand Mplier2 = Mcand Mplier1 = Mcand Mpliend » Mcand

1, l 1 1 1 F

32 bits 32 bits

1bit 1 bit+ it

N

i

1 bit—

/
NV
32 bits

Product63 ProductG?2 ce Product47..16 e Product! ProductD

——
(@)

=

Potok (ang. pipeline)

IFAD

Address

Instruction
memaory

Inarudion

LI

IDVEX EXMEM
Add Add
 shift | recult
W,
Read
register 1 dR;Esd1 - -~ \
Re,'_ad Zemi—
i
regis Er&agisma - ALY w1
Write data 2 " -
register
Wirite
data -

18 |’/Sign\-

L1
| extend |

a2

Address

Data
MEMory

Write
data

Read
data

MEMMWE

128-Entry | 32 KB Inst. cache (four-way associative) |«
inst TLB |4
(four-way) 16-Byte pre-decode+macro-op
+ * fusion, fetch buffer
v
Instruction
AGH tetch | 18-Entry instruction queue |
hardware |* > > > >
h 4 \ \ 4 v
Complex Simple Simple Simple
MACcro-op | MAacro-op Macro-op macro-op =
Mico Y et | decoder || decoder || decoder Inte | Core 17
ode ——>y v v v
28-Entry micro-op loop stream detect buffer
| Register alias table and allocator |
Retirement v
register file | 128-Entry reorder buffer
> 36-Entry reservation station
v v v v v v
ALU ALU Load Store Store ALU
shift shift address | | address data shift
[[[
SSE SSE v v v SSE
shuffle shuffle MEmﬂ'lT arder buffer shuffle
ALU ALU ALU
I [
128-bit 128-bit 128-bit
FMUL FMUL Store FMUL
FDIV FDIV & load FDIV
I | |
YVY VY) 4
512-Entry unified <+ 64-Entry data TLB 32-KB dual-ported data 256 KB unified 12
L2 TLB (4-way) | (4-way associative) | | cache (B-way associative) —" cache (eight-way)
8 ME all core shared and inclusive L3 —— Uncore arbiter (handles scheduling and
cache (16-way associative) 4— clock/power state differences)

Branch history table strategy

Next sequential

¥ address
IPFAR Branch
instruction Target —
address address State T
Lookup _ - = »
Memory
—
Add new g IPFAR = instruch:crn
entry . . . prefix address register
Update] : : *
state l
Branch miss .
> handling Redirect

MWJJJ The states in a 2-bit prediction scheme
AGH

e \
' Taken
Mot taken -
Predict taken Predict taken
Taken
Mot taken J Taken
Mot taken
Predict not taken
Taken

N

