AKADEMIA GORNICZO-HUTNICZA
A G H IM. STANISEAWA STASZICA W KRAKOWIE

Procesory i Architektura
Systemow Komputerowych

Architektura potokowa

IET

Katedra Elektroniki
Krakow 2015
dr inz. Roman Rumian

Typical x86 instruction formats

b
()
r —_—

a. JE EIP + displacement

4 4 8
Jg | Cond- Displacement
tion
b. CALL
8 32
CALL Offset

c. MOV EBX, [EDI + 45]

6 11 8 8
r'm .
MOV |d|w Postbyte Displacement
d. PUSH ESI
5 3
PUSH | Reg

e. ADD EAX, #6765
4 3 1 32

ADD |Reg|w Immediate

f. TEST EDX, #42
7 1 8 32

TEST w Postbyte Immediate

MWJJJ Some typical x86 instructions and
their functions

je name if equal(condition code) {EIP=name};
EIP-128 <=name < EIP+128
jmp name EIP=name
call name SP=5P-4; M[SP]=EIP+5; EIP=name;
movw EBX, [EDI+45] EBX=M[EDI+45]
push ESI SP=5P-4; M[SP]=ESI
pop EDI EDI=M[SP]; SP=5P+4
add EAX #6765 EAX=EAX+6765
test EDX, {42 Set condition code (flags) with EDX and 42
movs | MLEDI]=M[ESI]:
EDI=EDI+4; ESI=ESI+4

AGH
State /f--""'___ ___""'-x\ State
element —»{ Combinational logic) element
1 - ! 2

Clock cycle

Combinational logic, state elements, and the clock are closely related.

In a synchronous digital system, the clock determines when elements with state will
write values into internal storage. Any inputs to a state element must reach a stable
value (that is, have reached a value from which they will not change until after the
clock edge) before the active clock edge causes the state to be updated. All state
elements, including memory, are assumed to be positive edge-triggered; that is,
they change on the rising clock edge.

“ A portion of the datapath used for fetching
Instructions and incrementing the program
AGH counter.

4
| pC Read
address
Instruction ——
Instruction
memory

MWJJJ The two elements needed to implement R-
format ALU operations are the register file

and the ALU
P
~_.,5 Read ALU operation
register 1 Read N
I .
Register 4 5 |Read data 1
numbers | register 2 e
5 | writ Registers » Data ALU A
g result
. register Read —
' data 2
Data Write)
Data
RegWrite
a. Registers b ALU

The two units needed to implement loads and
m JJJ stores, in addition to the register file and ALU, are
the data memory unit and the sign extension unit

AGH
MemWrite
—— Address Read —
data
16 Sign- 32
Data \ extend
Write memory
——
data
MemRead

a. Data memory unit b. Sign extension unit

The datapath for a branch uses the ALU to evaluate the
branch condition and a separate adder to compute the
branch target as the sum of the incremented PC and the
sign-extended, lower 16 bits of the instruction (the branch

displacement), shifted left 2 bits
PC +4 from instruction datapath —
B h
>Add Sum tarrag':f
Shift
%ﬂ 2
. Heﬁid ALU operation
Instruction register 1 Read N
Read data 1
register 2 To branch
Registers >ALU Zero control logic
Write
register Read .
Write data 2 :
data
RegWrite | /\
16 ;lu Sign- II 32
S Tlextend [T

_/

The simple datapath with the control unit

b
(=)
T —_—

= = “

ALU
! _-/ >Addresult
N -\
/™ | RegDst left 2 /’// ~
" \ Branch U] .
) | | MemRead L
Instruction [31-26] | | MemtoReg
rIC:}ntruI ALUOD
| MemWnite
| ALUSrc
\, RegWrite
Instruction [25-21] Read
Read . .]
= PC e El{?dress _ register 1 pgaqg R
Instruction [20—18] Read data 1
Instruction _I—?' register 2 >n|_|_| Zero
[31_']] M Write REEd _-__('ﬁ rEASL[Jll-.IIJ: - Addr&ssﬁﬁ:tg 1
Instruction || |instruction [15-11] | ¥ || register 9ata2 M M
memory ||e ’
Q - Write . 1: ,_..r"’-ﬁ ﬂx
data Registers Write Data
/ \ "| data MeEMOTY
N
Instruction [15-0] 16 | Sitg"'dl Ei;_r l ALl "'._
@ \control|
'-.L\h- P __.-'
Instruction [5-0] |

MWJJJ The laundry analogy for pipelining
AGH

mmm The pipelined version of the datapath
AGH

=0 IDEX EXUMEM MEMWE
—
Add -~ = —I-\I
g AuumPE-u“: -
[snim
\™

e
M B
u = pc | Adress ﬁ o | REST Read
X g register 1] M -
L 1#_.. 7] @ata 1
- = - Read FEm—= =
Instruction _ register 2) ALY
MmOy - - Reglsiers peqy _ T AL = »| Address %‘;Zj = ——
—| VT S “a resu M
o u oata :
memo
d=t3 P ry \0
_ o | ‘Witz
l//_\‘\ - " | oata
16 32
= | =gn- || -
T extend |

_/

Pipeline definitions
AGH

Pipelining exploits the potential parallelism among instructions. This parallelism is
called instruction-level parallelism (ILP).

Another approach is to replicate the internal components of the computer so that it
can launch multiple instructions in every pipeline stage. The general name for this
technique is multiple issue.

Launching multiple instructions per stage allows the instruction execution rate to
exceed the clock rate or, stated alternatively, the CPI to be less than 1. It is sometimes
useful to flip the metric and use IPC, or instructions per clock cycle. Hence, a 4 GHz
four-way multiple-issue microprocessor can execute a peak rate of 16 billion
instructions per second and have a best-case CPI of 0.25, or an IPC of 4. Assuming a
five-stage pipeline, such a processor would have 20 instructions in execution at any
given time. Today’s high-end microprocessors attempt to issue from three to six
instructions in every clock cycle.

There are two major ways to implement a multiple-issue processor, with the major
difference being the division of work between the compiler and the hardware.

Because the division of work dictates whether decisions are being made statically (that
is, at compile time) or dynamically (that is, during execution), the approaches are
sometimes called static multiple issue and dynamic multiple issue.

issue packet The set of instructions that issues together in one clock cycle; the
packet may be determined statically by the compiler or dynamically by the processor.

AGH

superscalar An advanced pipelining technique that enables the processor to execute
more than one instruction per clock cycle by selecting them during execution.
dynamic pipeline scheduling Hardware support for reordering the order of
instruction execution so as to avoid stalls.

static multiple issue An approach to implementing a multiple-issue processor where
many decisions are made by the compiler before execution.

dynamic multiple issue An approach to implementing a multipl eissue processor
where many decisions are made during execution by the processor.

issue slots The positions from which instructions could issue in a given clock cycle; by
analogy, these correspond to positions at the starting blocks for a sprint.

p—
ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB
ALU or branch instruction IF D EX MEM wB
Load or store instruction IF D EX MEM wB
ALU or branch instruction IF D EX MEM wB
Load or store instruction IF D EX MEM WB
ALU or branch instruction IF D EX MEM WB
Load or store instruction IF D EX MEM WB

Static two-issue pipeline in operation

AGH

commit unit The unit in a dynamic or out-of-order execution pipeline that decides when it is safe to
release the result of an operation to programmervisible registers and memory.

reservation station A buffer within a functional unit that holds the operands and the operation.

reorder buffer The buffer that holds results in a dynamically scheduled processor until it is safe to store
the results to memory or a register.

Instruction fetch
and decode unit

In-order issue

3 r Y i

Reservation | | Reservation Reservation || Reservation
station station T station station

Functional
units

Floating Load-
point store

Integer Integer Out-of-order execute

Y

Gommit In-order commit
unit

The three primary units of a dynamically scheduled pipeline

m Record of Intel Microprocessors in
M]JJ terms of pipeline complexity,

AGH number of cores, and power
I I) =
Microprocessor Year | Clock Rat Stages | Width | Speculation Chip Power
Intel 486 1989 25 MHz 1 1 W
Intel Pentium 1993 66 MHz 3 2 No 1 10 W
Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29 W
Intel Pentium 4 Willamette 2001 | 2000 MHz 22 3 Yes 1 m W
Intel Pentium 4 Prescott 2004 | 3600 MHz 31 3 Yes 1 103 W
Intel Core 2006 | 2930 MHz 14 4 Yes 2 7w W
Intel Core i5 Nehalem 2010 | 3300 MHz 14 4 Yes 1 87T W
Intel Core i5 Ivy Bridge 2012 | 3400 MHz 14 4 Yes 8 m W

” Specification of the ARM Cortex-A8
and the Intel Core 17 920

Market Personal Mobile Device Server, Cloud
Thermal design power 2 Watts 130 Watts
Clock rate 1 GHz 2.66 GHz
Cores/Chip 1 4
Floating point? No Yes
Multiple Issue? Dynamic Dynamic
Peak instructions/clock cycle 2 4
Pipeline Stages 14 14

Pipeline schedule

Static In-order

Dynamic Out-of-order with Speculation

Branch prediction 2-level 2-level

1st level caches / core 32KIBI, 32 KIBD 32HKEBI 32 KED
2nd level cache / core 128 - 1024 KiB 256 KiB

3rd level cache (shared) - 2-8MiB

The ARM Cortex-A8 pipeline

oy ——
()
€

FO F1 F2 DO D1 D2 D3 D4 EO E1 E2 E3 E4 E5

Branch mispredict

penalty =13 cycles Instruction execute and load/store
|
: >
Instruction g || ALU/MUL pipe 0 BP
fetch T e update
N —*| 2
HANT |, [12-entry| [. B !
AGU " fatch Instruction decode ~ . BP
[TLE ™| queue || < ™ ALU pipe 1
> & update
BTE | 7 :
GRI-éEt = , BP
@ i LS pipe Oor 1 update

The A8 pipeline. The first three stages fetch instructions into a 12-entry
instruction fetch buffer. The Address Generation Unit (AGU) uses a Branch
Target Buffer (BTB), Global History Buffer (GHB), and a Return Stack (RS) to
predict branches to try to keep the fetch queue full. Instruction decode is five
stages and instruction execution is six stages.

Intel Core 17 pipeline

b
()
r —_—

128-Entry | 32 KB Inst. cache (four-way associative) |«
NSt TLB |4 v
(four-way) 16-Byte pre-decode + macro-op

* + fusion, fetch buffer
'”SH" ”:#“" | 18-Entry instruction queue |
hardware ¢ B > - =

Complex Simple Simple Simple
Micro v macro-op macro-op macro-op macro-op

i decoder decoder decoder decoder
—>¥ v v v
28-Entry micro-op loop stream detect buffer
Register alias table and allocator
Retirament
register file |V 128-Entry reorder buffer
i 36-Entry reservation station
v v v v v v
ALU ALU Load Store Store ALU
shift shift address | | address data shift
]]]
SSE S8E v L v SSE
shuffle shuffle Memory order buffer shuffle
ALU ALU ALU
| |
128-bit 128-bit 128-bit
FMUL FMUL Store FMUL
FDIV FDIV & load FDIV
T T _ —
YYVYY L 4
512-Enfry unified | 64-Entry data TLB 32-KB dual-ported data 256 KB unified 12
L2 TLB (4-way) —»|(4-way associative) | | cache (8-way associative) " cache (eight-way)
v 4
8 MB all core shared and inclusive L3 —» Uncore arbiter (handles scheduling and
cache (16-way associative) -+ clock/power state differences)

The Core i7 pipeline with memory components. The total pipeline depth is 14 stages, with branch

mispredictions costing 17 clock cycles. This design can buffer 48 loads and 32 stores. The six independent units
can begin execution of a ready RISC operation each clock cycle.

The eight steps an x86 instruction

goes through for execution.
AGH

1. Instruction fetch—The processor uses a multilevel branch target buffer to achieve a balance between speed
and prediction accuracy. There is also a return address stack to speed up function return. Mispredictions cause
a penalty of about 15 cycles. Using the predicted address, the instruction fetch unit fetches 16 bytes from the
instruction cache.

2. The 16 bytes are placed in the predecode instruction buffer— The predecode stage transforms the 16 bytes
into individual x86 instructions. This predecode is nontrivial since the length of an x86 instruction can be from 1
to 15 bytes and the predecoder must look through a number of bytes before it knows the instruction length.
Individual x86 instructions are placed into the 18-entry instruction queue.

3. Micro-op decode—Individual x86 instructions are translated into microoperations (micro-ops). Three of the
decoders handle x86 instructions that translate directly into one micro-op. For x86 instructions that have more
complex semantics, there is a microcode engine that is used to produce the micro-op sequence; it can produce
up to four micro-ops every cycle and continues until the necessary micro-op sequence has been generated. The
micro-ops are placed according to the order of the x86 instructions in the 28-entry micro-op buffer.

4. The micro-op buffer performs loop stream detection—If there is a small sequence of instructions (less than
28 instructions or 256 bytes in length) that comprises a loop, the loop stream detector will find the loop and
directly issue the micro-ops from the buffer, eliminating the need for the instruction fetch and instruction
decode stages to be activated.

5. Perform the basic instruction issue—Looking up the register location in the register tables, renaming the
registers, allocating a reorder buffer entry, and fetching any results from the registers or reorder buffer before
sending the micro-ops to the reservation stations.

6. The i7 uses a 36-entry centralized reservation station shared by six functional units. Up to six micro-ops may
be dispatched to the functional units every clock cycle.

7. The individual function units execute micro-ops and then results are sent back to any waiting reservation
station as well as to the register retirement unit, where they will update the register state, once it is known
that the instruction is no longer speculative. The entry corresponding to the instruction in the reorder buffer is
marked as complete.

8. When one or more instructions at the head of the reorder buffer have been marked as complete, the pending
writes in the register retirement unit are executed, and the instructions are removed from the reorder buffer.

6.00
Memory hierarchy stalls iy
5 00 +——— M Pipeline stalls 8
M Ideal CPI
4.00 B

3.00

2.00 185
1.41 -6
i | l l l l I

twolf bzlp:E qzip parser gap perlbmk gcc crafty vpr vortex

CPI on ARM Cortex A8 for the Minnespec benchmarks, which are small versions of
the SPEC2000 benchmarks. These benchmarks use the much smaller inputs to reduce
running time by several orders of magnitude. The smaller size significantly underestimates
the CPI impact of the memory hierarchy

MWJJJ CPI of Intel Core i7 920 running
SPEC2006 integer benchmarks

AGH
3_'_"_"""_'___'"_""___ ___________________
Stalls, misspeculation
= Ideal CP o
R i
2.12
2_ __
o A ... N WH
& 1.5
1.23
1 10z 106
0.82
0.74 0.77
o059 0.61 0.85
015__'144__ N BN N BN N R BN EE EE B -

llmu Flynn taxonomy of computer architectures
AGH

Single Instruction, Single Data (SISD) There is only one stream of
instructions and one stream of data; ignoring co-processors and additional
PEs added to produce identical, redundant computation (e.g., to cope with
errors), there can only be one useful PE in such a processor.

Single Instruction, Multiple Data (SIMD) There is only one stream of
instructions but there are many streams of data; thus we can have many
PEs each executing the same instruction at a given point in time but using
different data in each case. Examples of SIMD computers include the Cray
series of vector supercomputers and the Graphics Processing Units (GPUs)
that render 3D images within most modern graphics cards.

U

AGH

Multiple Instruction, Single Data (MISD) It is hard to justify the existence of
MISD processors, in the sense that it is hard to see how such a device could compute
useful results: what we are describing is a situation where we take a single data
stream and operate on it using many different instruction streams.

Examples of MISD processors are rare but application areas are typically those that
require some form of duplicate computation. For example, a computer to forecast
weather might run several simulation models on the same dataset and average the
results to get a more reasonable result.

Multiple Instruction, Multiple Data (MIMD) There are many streams of
instructions and many streams of data; essentially we have many PEs executing
different instructions on different data at the same time. In a sense, this is the most
general form of parallel processor. Examples include a cluster of workstations (where
the PEs are physically separate computers) connected by a network in order to
collectively perform some task; the Beowulf design developed by Donald Becker at
NASA is an example of how one can construct such system inexpensively. However,
recent advances in processor design have led us to so-called multi-core designs
whereby one has several processor cores on one microchip; the combined system is
essentially a small-scale MIMD computer.

This taxonomy is usually extended to include the so-called Single
Program, Multiple Data (SPMD) model. This is similar to SIMD in the
sense that each processor is presented with a single set of instructions
to execute. However, unlike SIMD a given PE within an SPMD processor
can obtain an identifier (i.e., a processor number of some sort) and
make conditional decisions based on that identifier. So, for example, PE
number one might take one control-flow path within the single program
while PE number two might take another. Hence although they are both

given a single program, they might execute different instructions within
it.

