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Typical x86 instruction formats



Some typical x86 instructions and 
their functions



Combinational logic, state elements, and the clock are closely related.

In a synchronous digital system, the clock determines when elements with state will 

write values into internal storage. Any inputs to a state element must reach a stable 

value (that is, have reached a value from which they will not change until after the 

clock edge) before the active clock edge causes the state to be updated. All state

elements, including memory, are assumed to be positive edge-triggered; that is, 

they change on the rising clock edge.



A portion of the datapath used for fetching

instructions and incrementing the program

counter.



The two elements needed to implement R-
format ALU operations are the register file 
and the ALU



The two units needed to implement loads and 
stores, in addition to the register file and ALU, are 
the data memory unit and the sign extension unit



The datapath for a branch uses the ALU to evaluate the 
branch condition and a separate adder to compute the 
branch target as the sum of the incremented PC and the
sign-extended, lower 16 bits of the instruction (the branch 
displacement), shifted left 2 bits



The simple datapath with the control unit



The laundry analogy for pipelining



The pipelined version of the datapath



Pipelining exploits the potential parallelism among instructions. This parallelism is 
called instruction-level parallelism (ILP).

Another approach is to replicate the internal components of the computer so that it 
can launch multiple instructions in every pipeline stage. The general name for this 
technique is multiple issue.
Launching multiple instructions per stage allows the instruction execution rate to
exceed the clock rate or, stated alternatively, the CPI to be less than 1. It is sometimes 
useful to flip the metric and use IPC, or instructions per clock cycle. Hence, a 4 GHz 
four-way multiple-issue microprocessor can execute a peak rate of 16 billion 
instructions per second and have a best-case CPI of 0.25, or an IPC of 4. Assuming a 
five-stage pipeline, such a processor would have 20 instructions in execution at any 
given time. Today’s high-end microprocessors attempt to issue from three to six 
instructions in every clock cycle.

There are two major ways to implement a multiple-issue processor, with the major 
difference being the division of work between the compiler and the hardware.
Because the division of work dictates whether decisions are being made statically (that 
is, at compile time) or dynamically (that is, during execution), the approaches are 
sometimes called static multiple issue and dynamic multiple issue.

issue packet The set of instructions that issues together in one clock cycle; the 
packet may be determined statically by the compiler or dynamically by the processor.

Pipeline definitions



Static two-issue pipeline in operation

superscalar An advanced pipelining technique that enables the processor to execute
more than one instruction per clock cycle by selecting them during execution.
dynamic pipeline scheduling Hardware support for reordering the order of 
instruction execution so as to avoid stalls.
static multiple issue An approach to implementing a multiple-issue processor where
many decisions are made by the compiler before execution.
dynamic multiple issue An approach to implementing a multipl eissue processor
where many decisions are made during execution by the processor.
issue slots The positions from which instructions could issue in a given clock cycle; by 
analogy, these correspond to positions at the starting blocks for a sprint.



The three primary units of a dynamically scheduled pipeline

commit unit The unit in a dynamic or out-of-order execution pipeline that decides when it is safe to
release the result of an operation to programmervisible registers and memory.

reservation station A buffer within a functional unit that holds the operands and the operation.

reorder buffer The buffer that holds results in a dynamically scheduled processor until it is safe to store 
the results to memory or a register.



Record of Intel Microprocessors in 
terms of pipeline complexity, 
number of cores, and power



Specification of the ARM Cortex-A8 
and the Intel Core i7 920



The A8 pipeline. The first three stages fetch instructions into a 12-entry 
instruction fetch buffer. The Address Generation Unit (AGU) uses a Branch 
Target Buffer (BTB), Global History Buffer (GHB), and a Return Stack (RS) to 
predict branches to try to keep the fetch queue full. Instruction decode is five
stages and instruction execution is six stages.

The ARM Cortex-A8 pipeline



The Core i7 pipeline with memory components. The total pipeline depth is 14 stages, with branch 
mispredictions costing 17 clock cycles. This design can buffer 48 loads and 32 stores. The six independent units 
can begin execution of a ready RISC operation each clock cycle.

Intel Core i7 pipeline 



1. Instruction fetch—The processor uses a multilevel branch target buffer to achieve a balance between speed 
and prediction accuracy. There is also a return address stack to speed up function return. Mispredictions cause 
a penalty of about 15 cycles. Using the predicted address, the instruction fetch unit fetches 16 bytes from the 
instruction cache.
2. The 16 bytes are placed in the predecode instruction buffer— The predecode stage transforms the 16 bytes 
into individual x86 instructions. This predecode is nontrivial since the length of an x86 instruction can be from 1 
to 15 bytes and the predecoder must look through a number of bytes before it knows the instruction length. 
Individual x86 instructions are placed into the 18-entry instruction queue.
3. Micro-op decode—Individual x86 instructions are translated into microoperations (micro-ops). Three of the 
decoders handle x86 instructions that translate directly into one micro-op. For x86 instructions that have more 
complex semantics, there is a microcode engine that is used to produce the micro-op sequence; it can produce 
up to four micro-ops every cycle and continues until the necessary micro-op sequence has been generated. The 
micro-ops are placed  according to the order of the x86 instructions in the 28-entry micro-op buffer.
4. The micro-op buffer performs loop stream detection—If there is a small sequence of instructions (less than 
28 instructions or 256 bytes in length) that comprises a loop, the loop stream detector will find the loop and 
directly issue the micro-ops from the buffer, eliminating the need for the instruction fetch and instruction 
decode stages to be activated.
5. Perform the basic instruction issue—Looking up the register location in the register tables, renaming the 
registers, allocating a reorder buffer entry, and fetching any results from the registers or reorder buffer before 
sending the micro-ops to the reservation stations.
6. The i7 uses a 36-entry centralized reservation station shared by six functional units. Up to six micro-ops may 
be dispatched to the functional units every clock cycle.
7. The individual function units execute micro-ops and then results are sent back to any waiting reservation 
station as well as to the register retirement unit, where they will update the register state, once it is known 
that the instruction is no longer speculative. The entry corresponding to the instruction in the reorder buffer is 
marked as complete.
8. When one or more instructions at the head of the reorder buffer have been marked as complete, the pending 
writes in the register retirement unit are executed, and the instructions are removed from the reorder buffer.

The eight steps an x86 instruction 
goes through for execution.



CPI on ARM Cortex A8 for the Minnespec benchmarks, which are small versions of 
the SPEC2000 benchmarks. These benchmarks use the much smaller inputs to reduce 
running time by several orders of magnitude. The smaller size significantly underestimates 
the CPI impact of the memory hierarchy



CPI of Intel Core i7 920 running 
SPEC2006 integer benchmarks



Flynn taxonomy of computer architectures

Single Instruction, Single Data (SISD) There is only one stream of 
instructions and one stream of data; ignoring co-processors and additional 
PEs added to produce identical, redundant computation (e.g., to cope with 
errors), there can only be one useful PE in such a processor. 

Single Instruction, Multiple Data (SIMD) There is only one stream of 
instructions but there are many streams of data; thus we can have many 
PEs each executing the same instruction at a given point in time but using 
different data in each case. Examples of SIMD computers include the Cray 
series of vector supercomputers and the Graphics Processing Units (GPUs) 
that render 3D images within most modern graphics cards.



Multiple Instruction, Single Data (MISD) It is hard to justify the existence of
MISD processors, in the sense that it is hard to see how such a device could compute 
useful results: what we are describing is a situation where we take a single data 
stream and operate on it using many different instruction streams.
Examples of MISD processors are rare but application areas are typically those that 
require some form of duplicate computation. For example, a computer to forecast 
weather might run several simulation models on the same dataset and average the 
results to get a more reasonable result.

Multiple Instruction, Multiple Data (MIMD) There are many streams of 
instructions and many streams of data; essentially we have many PEs executing
different instructions on different data at the same time. In a sense, this is the most 
general form of parallel processor. Examples include a cluster of workstations (where 
the PEs are physically separate computers) connected by a network in order to 
collectively perform some task; the Beowulf design developed by Donald Becker at 
NASA is an example of how one can construct such system inexpensively. However, 
recent advances in processor design have led us to so-called multi-core designs 
whereby one has several processor cores on one microchip; the combined system is 
essentially a small-scale MIMD computer.



This taxonomy is usually extended to include the so-called Single 
Program, Multiple Data (SPMD) model. This is similar to SIMD in the 
sense that each processor is presented with a single set of instructions 
to execute. However, unlike SIMD a given PE within an SPMD processor 
can obtain an identifier (i.e., a processor number of some sort) and 
make conditional decisions based on that identifier. So, for example, PE 
number one might take one control-flow path within the single program 
while PE number two might take another. Hence although they are both 
given a single program, they might execute different instructions within 
it.


