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temporal locality The principle stating that if a data location is
referenced then it will tend to be referenced again soon.
spatial locality The locality principle stating that if a data location is
referenced, data locations with nearby addresses will tend to be 
referenced soon.
memory hierarchy A structure that uses multiple levels of memories; as 
the distance from the processor increases, the size of the memories and 
the access time both increase.
block (or line) Th e minimum unit of information that can be either 
present or not present in a cache.
hit rate The fraction of memory accesses found in a level of the memory
hierarchy.
miss rate The fraction of memory accesses not found in a level of the
memory hierarchy.
hit time The time required to access a level of the memory hierarchy, 
including the time needed to determine whether the  access is a hit or a 
miss.
miss penalty The time required to fetch a block into a level of the 
memory hierarchy from the lower level, including the time to access the 
block, transmit it from one level to the other, insert it in the level that
experienced the miss, and then pass the block to the requestor.



By implementing the memory system as a hierarchy, the user has the illusion of a 
memory that is as large as the largest level of the hierarchy, but can be accessed as if 
it were all built from the fastest memory. Flash memory has replaced disks in many 
personal mobile devices, and may lead to a new level in the storage hierarchy for 
desktop and server computers

The basic structure of a memory hierarchy



The memory hierarchy





Cache and Main Memory



Typical Cache Organization



Every pair of levels in the memory hierarchy can be thought of as having 
an upper and lower level. Within each level, the unit of information that is 
present or not is called a block or a line. Usually we transfer an entire block when 
we copy something between levels



Memory Technologies

DRAM size increased by multiples of four approximately once every 
three years until 1996, and thereafter considerably slower



Modern DRAMs are organized in banks, typically four for DDR3. Each bank consists of a series

of rows. Sending a PRE (precharge) command opens or closes a bank. A row address is sent

with an Act (activate), which causes the row to transfer to a buffer. When the row is in the buffer,

it can be transferred by successive column addresses at whatever the width of the DRAM is

(typically 4, 8, or 16 bits in DDR3) or by specifying a block transfer and the starting address.

Each command, as well as block transfers, is synchronized with a clock.

A DDR4-3200 DRAM can do 3200 million transfers per second, which means it has a
1600 MHz clock.

Internal organization of a DRAM. 



direct-mapped cache
A cache structure in which each memory location is mapped to

exactly one location in the cache.



tag A field in a table used for a memory hierarchy that contains the address

information required to identify whether the associated block in the hierarchy 

corresponds to a requested word.

valid bit A field in the tables of a memory hierarchy that indicates that
the associated block in the hierarchy contains valid data.

Caching is perhaps the most important example of the big idea of prediction. It 

relies on the principle of locality to try to find the desired data in the higher levels of 

the memory hierarchy, and provides mechanisms to ensure that when the 

prediction is wrong it finds and uses the proper data from the lower levels of the 

memory hierarchy. The hit rates of the cache prediction on modern computers are 

often higher than 95%.



For this cache, the lower portion of the address is used to select a cache entry consisting of a data word and a tag. This 

cache holds 1024 words or 4 KiB. We assume 32-bit addresses in this chapter. The tag from the cache is compared against the 

upper portion of the address to determine whether the entry in the cache corresponds to the requested address. Because the cache 

has 210 (or 1024) words and a block size of one word, 10 bits are used to index the cache, leaving 32 −10 − 2 = 20 bits to be 

compared against the tag. If the tag and upper 20 bits of the address are equal and the valid bit is on, then the request hits in the 

cache, and the word is supplied to the processor. Otherwise, a miss occurs.



For the associative and set-associative techniques, a replacement algorithm is needed. To 
achieve high speed, such an algorithm must be implemented in hardware. A number of 
algorithms have been tried. We mention four of the most common. Probably the most
effective is least recently used (LRU): Replace that block in the set that has been in the cache 
longest with no reference to it. For two-way set associative, this is easily implemented. Each 
line includes a USE bit. When a line is referenced, its USE bit is set to 1 and the USE bit of the 
other line in that set is set to 0. When a block is to be read into the set, the line whose USE bit 
is 0 is used. Because we are assuming that more recently used memory locations are more 
likely to be referenced, LRU should give the best hit ratio. LRU is also relatively easy to 
implement for a fully associative cache. The cache mechanism maintains a separate list of 
indexes to all the lines in the cache. When a line is referenced, it moves to the front of the list.
For replacement, the line at the back of the list is used. Because of its simplicity of
implementation, LRU is the most popular replacement algorithm.
Another possibility is first-in-first-out (FIFO): Replace that block in the set
that has been in the cache longest. FIFO is easily implemented as a round-robin or circular 
buffer technique. Still another possibility is least frequently used (LFU):
Replace that block in the set that has experienced the fewest references. LFU could be 
implemented by associating a counter with each line. A technique not based on usage (i.e., not 
LRU, LFU, FIFO, or some variant) is to pick a line at random from among the candidate lines. 
Simulation studies have shown that random replacement provides only slightly inferior 
performance to an algorithm based on usage

Replacement methods



Varying Associativity over Cache Size



Note that the miss rate actually goes up if the block size is too large
relative to the cache size. Each line represents a cache of different size.
(This figure is independent of associativity, discussed soon.) Unfortunately,
SPEC CPU2000 traces would take too long if block size were included, so
this data is based on SPEC92.

Miss rate versus block size. 



write-through
A scheme in which writes always update both the cache and the next lower level of 
the memory hierarchy, ensuring that data is always consistent between the two.
write-back
A scheme that handles writes by updating values only to the block in the cache,
then writing the modified block to the lower level of the hierarchy when the block is
replaced.

write buffer
A queue that holds data while the data is waiting to be written to memory.

fully associative cache 
A cache structure in which a block can be placed in any location in the cache.

set-associative cache
A cache that has a fixed number of locations (at least two) where each block can be 
placed.

least recently used (LRU) 
A replacement scheme in which the block replaced is the one that has been unused 
for the longest time.



The location of a memory block whose address is 12 in a cache with eight blocks 
varies for direct-mapped, set-associative, and fully associative placement. In 
directmapped placement, there is only one cache block where memory block 12 can be 
found, and that block is given by (12 modulo 8)  4. In a two-way set-associative cache, there 
would be four sets, and memory block 12 must be in set (12 mod 4)  0; the memory block 
could be in either element of the set. In a fully associative placement, the memory block for 
block address 12 can appear in any of the eight cache blocks.

Cache organization



An eight-block cache configured as direct mapped, two-way set associative, four-way 
set associative, and fully associative. The total size of the cache in blocks is equal to the
number of sets times the associativity. Thus, for a fixed cache size, increasing the associativity 
decreases the number of sets while increasing the number of elements per set. With eight 
blocks, an eight-way set associative cache is the same as a fully associative cache.



The implementation of a four-way set-associative cache requires four comparators 
and a 4-to-1 multiplexor. The comparators determine which element of the selected set (if 
any) matches the tag. The output of the comparators is used to select the data from one of the 
four blocks of the indexed set, using a multiplexor with a decoded select signal. In some 
implementations, the Output enable signals on the data portions of the cache RAMs can be used 
to select the entry in the set that drives the output. The Output enable signal comes from the 
comparators, causing the element that matches to drive the data outputs. This organization 
eliminates the need for the multiplexor.



Comparing Quicksort and Radix Sort by 
(a) instructions executed per item
sorted, (b) time per item sorted, and (c) 
cache misses per item sorted. This data is 
from a paper by LaMarca and Ladner [1996]. 
Due to such results, new versions of Radix 
Sort have been invented that take memory 
hierarchy into account, to regain its 
algorithmic advantages. The basic idea of 
cache optimizations is to use all the data in a 
block repeatedly before it is replaced on a 
miss.



The key quantitative design parameters that characterize the major elements 
of memory hierarchy in a computer. These are typical values for these levels as of 
2012. Although the range of values is wide, this is partially because many of the values
that have shifted over time are related; for example, as caches become larger to 
overcome larger miss penalties, block sizes also grow. While not shown, server 
microprocessors today also have L3 caches, which can be 2 to 8 MiB and contain many 
more blocks than L2 caches. L3 caches lower the L2 miss penalty to 30 to 40 clock 
cycles.

The advantage of increasing the degree of associativity is that it usually decreases the miss 
rate. The improvement in miss rate comes from reducing misses that compete for the same 
location.



The data cache miss rates for each of eight cache sizes improve as the
associativity increases. 
While the benefit of going from one-way (direct mapped) to two-way set associative 
is significant, the benefits of further associativity are smaller (e.g., 1%–10% 
improvement going from two-way to four-way versus 20%–30% improvement going 
from one-way to two-way). There is even less improvement in going from four-way 
to eight-way set associative, which, in turn, comes very close to the miss rates of a 
fully associative cache. Smaller caches obtain a significantly larger absolute benefit 
from associativity because the base miss rate of a small cache is larger. Figure 5.16 
explains how this data was collected.





The ARM Cortex-A8 and Intel Core i7 
Memory Hierarchies

Address translation and TLB hardware for the ARM Cortex-A8 and Intel Core i7 920. 
Both processors provide support for large pages, which are used for things like the operating
system or mapping a frame buffer. The large-page scheme avoids using a large number of entries 
to map a single object that is always present.



Caches in the ARM Cortex-A8 and 
Intel Core i7 920.


