
Procesory i Architektura

Systemów Komputerowych

Virtual Machines & Virtual Memory

IET

Katedra Elektroniki

Kraków 2015

dr inż. Roman Rumian

System virtual machines present the illusion that the users have an entire
computer to themselves, including a copy of the operating system. A single
computer runs multiple VMs and can support a number of different operating
systems (OSes). On a conventional platform, a single OS “owns” all the
hardware resources, but with a VM, multiple OSes all share the hardware
resources.
The soft ware that supports VMs is called a virtual machine monitor (VMM) or
hypervisor; the VMM is the heart of virtual machine technology. The underlying
hardware platform is called the host, and its resources are shared among the
guest VMs. The VMM determines how to map virtual resources to physical
resources: a physical resource may be time-shared, partitioned, or even
emulated in soft ware.
The VMM is much smaller than a traditional OS; the isolation portion of a VMM is
perhaps only 10,000 lines of code.

VMs provide two other benefits that are commercially significant:
1. Managing software. VMs provide an abstraction that can run the complete
soft ware stack, even including old operating systems like DOS. A typical
deployment might be some VMs running legacy OSes, many running the current
stable OS release, and a few testing the next OS release.
2. Managing hardware. One reason for multiple servers is to have each
application running with the compatible version of the operating system on
separate computers, as this separation can improve dependability. VMs allow
these separate soft ware stacks to run independently yet share hardware,
thereby consolidating the number of servers. Another example is that some
VMMs support migration of a running VM to a different computer, either to
balance load or to evacuate from failing hardware.

What must a VM monitor do? It presents a software interface to guest software,
it must isolate the state of guests from each other, and it must protect itself
from guest software (including guest OSes). The qualitative requirements are:
■ Guest soft ware should behave on a VM exactly as if it were running on the

native hardware, except for performance-related behavior or limitations of fixed
resources shared by multiple VMs.
■ Guest soft ware should not be able to change allocation of real system

resources directly. To “virtualize” the processor, the VMM must control just about
everything—access to privileged state, I/O, exceptions, and interrupts—even
though the guest VM and OS currently running are temporarily using them.

To be in charge, the VMM must be at a higher privilege level than
the guest VM, which generally runs in user mode; this also ensures
that the execution of any privileged instruction will be handled by the
VMM. The basic requirements of system virtual:
■ At least two processor modes, system and user.
■ A privileged subset of instructions that is available only in

system mode, resulting in a trap if executed in user mode; all system
resources must be controllable only via these instructions.

A technique that uses main memory as a “cache” for secondary
storage.

Virtual Memory

physical address An address in main memory.

protection A set of mechanisms for ensuring that multiple processes
sharing the processor, memory, or I/O devices cannot interfere,
intentionally or unintentionally, with one another by reading or writing
each other’s data.
These mechanisms also isolate the operating system from a user
process.

page fault An event that occurs when an accessed page is not present
in main memory.

virtual address An address that corresponds to a location in virtual
space and is translated by address mapping to a physical address when
memory is accessed.

address translation Also called address mapping. The process by
which a virtual address is mapped to an address used to access memory.

In virtual memory, blocks of memory (called pages) are mapped
from one set of addresses (called virtual addresses) to another

set (called physical addresses).

Mapping from a virtual to a physical address. The page size is 212
4 KiB. The number of physical pages allowed in memory is 218, since
the physical page number has 18 bits in it. Thus, main memory can
have at most 1 GiB, while the virtual address space is 4 GiB.

■ Pages should be large enough to try to amortize the high access time.

Sizes from 4 KiB to 16 KiB are typical today. New desktop and server
systems are being developed to support 32 KiB and 64 KiB pages, but new
embedded systems are going in the other direction, to 1 KiB pages.

■ Organizations that reduce the page fault rate are attractive. The primary

technique used here is to allow fully associative placement of pages in memory.
■ Page faults can be handled in software because the overhead will be small

compared to the disk access time. In addition, soft ware can afford to use clever
algorithms for choosing how to place pages because even small reductions in the
miss rate will pay for the cost of such algorithms.
■ Write-through will not work for virtual memory, since writes take too long.

Instead, virtual memory systems use write-back.

Segmentation A variable-size address mapping scheme in which an address
consists of two parts: a segment number, which is mapped to a physical address,
and a segment off set.
page table The table containing the virtual to physical address translations in a
virtual memory system. The table, which is stored in memory, is typically indexed
by the virtual page number; each entry in the table contains the physical page
number for that virtual page if the page is currently in memory.
swap space The space on the disk reserved for the full virtual memory space of a
process.
reference bit Also called use bit. A field that is set whenever a page is accessed
and that is used to implement LRU or other replacement schemes.

The page table is indexed with the virtual page number to obtain the corresponding
portion of the physical address. We assume a 32-bit address. The page table pointer gives
the starting address of the page table. In this figure, the page size is 212 bytes, or 4 KiB. The
virtual address space is 232 bytes, or 4 GiB, and the physical address space is 230 bytes, which
allows main memory of up to 1 GiB. Th e number of entries in the page table is 220, or 1 million
entries. The valid bit for each entry indicates whether the mapping is legal. If it is off , then the
page is not present in memory. Although the page table entry shown here need only be 19 bits
wide, it would typically be rounded up to 32 bits for ease of indexing. Th e extra bits would be
used to store additional information that needs to be kept on a per-page basis, such as
protection.

The page table maps each page in virtual memory to either a page in main memory or
a page stored on disk, which is the next level in the hierarchy. The virtual page number is
used to index the page table. If the valid bit is on, the page table supplies the physical page
number (i.e., the starting address of the page in memory) corresponding to the virtual page. If
the valid bit is off , the page currently resides only on disk, at a specifi ed disk address. In many
systems, the table of physical page addresses and disk page addresses, while logically one table,
is stored in two separate data structures. Dual tables are justifi ed in part because we must keep
the disk addresses of all the pages, even if they are currently in main memory. Remember that
the pages in main memory and the pages on disk are the same size.

translation-lookaside buffer (TLB) A cache that keeps track of
recently used address mappings to try to avoid an access to the page
table.

The TLB acts as a cache of the page table for the entries that map to physical pages only.
The TLB contains a subset of the virtual-to-physical page mappings that are in the page table. The
TLB mappings are shown in color. Because the TLB is a cache, it must have a tag field. If there is
no matching entry in the TLB for a page, the page table must be examined. The page table either
supplies a physical page number for the page (which can then be used to build a TLB entry) or
indicates that the page resides on disk, in which case a page fault occurs. Since the page table has
an entry for every virtual page, no tag field is needed; in other words, unlike a TLB, a page table is
not a cache.

Some typical values for a TLB might be:
■ TLB size: 16–512 entries
■ Block size: 1–2 page table entries (typically 4–8

bytes each)
■ Hit time: 0.5–1 clock cycle
■ Miss penalty: 10–100 clock cycles
■ Miss rate: 0.01%–1%

A conceptual diagram of a superscalar

processor with hyperthreading

