
Procesory i Architektura

Systemów Komputerowych

Redundant Arrays of Inexpensive Disks (RAID)

& Parallel Processors

IET

Katedra Elektroniki

Kraków 2015

dr inż. Roman Rumian

Amdahl’s law states that:

The law assumes a program in which a fraction of the
execution time involves code that is inherently serial and a
fraction f that involves code that is infinitely parallelizable
with no scheduling overhead.

multiprocessor
A computer system with at least two processors. This computer is in contrast to a
uniprocessor, which has one, and is increasingly hard to find today.
task-level parallelism or process-level parallelism
Utilizing multiple processors by running independent programs simultaneously.
parallel processing program
A single program that runs on multiple processors simultaneously.
cluster
A set of computers connected over a local area network that function as a single
large multiprocessor.
multicore microprocessor
A microprocessor containing multiple processors (“cores”) in a single integrated
circuit. Virtually all microprocessors today in desktops and servers are multicore.
shared memory multiprocessor (SMP)
A parallel processor with a single physical address space.

Getting good speed-up on a multiprocessor while keeping the problem size
fixed is harder than getting good speed-up by increasing the size of the
problem.
strong scaling
Speedup achieved on a multiprocessor without increasing the size of the problem.
weak scaling
Speedup achieved on a multiprocessor while increasing the size of the problem
proportionally to the increase in the number of processors.

A Taxonomy of Parallel Processor Architectures

Hardware categorization and examples based on number of
instruction streams and data streams: SISD, SIMD, MISD, and
MIMD.

SISD or Single Instruction stream, Single Data stream.
A uniprocessor.

MIMD or Multiple Instruction streams, Multiple Data streams.
A multiprocessor.

SPMD Single Program, Multiple Data streams. The conventional MIMD
programming model, where a single program runs across all processors.

SIMD or Single Instruction stream, Multiple Data streams.
The same instruction is applied to many data streams, as in a vector
processor.

Hardware multithreading
Increasing utilization of a processor by switching to another thread when
one thread is stalled.
thread
A thread includes the program counter, the register state, and the stack.
It is a lightweight process; whereas threads commonly share a single
address space, processes don’t.
process
A process includes one or more threads, the address space, and the
operating system state. Hence, a process switch usually invokes the
operating system, but not a thread switch.
fine-grained multithreading
A version of hardware multithreading that implies switching between
threads after every instruction.
coarse-grained multithreading
A version of hardware multithreading that implies switching between
threads only after
significant events, such as a last-level cache miss.
Simultaneous multithreading (SMT)
A version of multithreading that lowers the cost of multithreading by
utilizing the resources needed for multiple issue, dynamically scheduled
microarchitecture.

How four threads use the issue slots of a superscalar processor in different approaches.
The four threads at the top show how each would execute running alone on a standard superscalar processor
without multithreading support. The three examples at the bottom show how they would execute running
together in three multithreading options. The horizontal dimension represents the instruction issue capability in
each clock cycle. The vertical dimension represents a sequence of clock cycles.
An empty (white) box indicates that the corresponding issue slot is unused in that clock cycle. The shades of
gray and color correspond to four different threads in the multithreading processors. The additional pipeline
start-up effects for coarse multithreading, which are not illustrated in this figure, would lead to further loss in
throughput for coarse multithreading.

◆ A traditional way to increase system performance is to use multiple processors
that can execute in parallel to support a given workload.The two most common
multiple-processor organizations are symmetric multiprocessors (SMPs) and
clusters. More recently, nonuniform memory access (NUMA) systems have
been introduced commercially.
◆ An SMP consists of multiple similar processors within the same computer,
interconnected by a bus or some sort of switching arrangement. The most critical
problem to address in an SMP is that of cache coherence. Each processor has its
own cache and so it is possible for a given line of data to be present in more than
one cache. If such a line is altered in one cache, then both main memory and the
other cache have an invalid version of that line.
Cache coherence protocols are designed to cope with this problem.
◆ When more than one processor are implemented on a single chip, the
configuration
is referred to as chip multiprocessing. A related design scheme is to replicate
some of the components of a single processor so that the processor can execute
multiple threads concurrently; this is known as a multithreaded processor.
◆ A cluster is a group of interconnected, whole computers working together as a
unified computing resource that can create the illusion of being one machine.The
term whole computer means a system that can run on its own, apart from the
cluster.
◆ A NUMA system is a shared-memory multiprocessor in which the access time
from a given processor to a word in memory varies with the location of the
memory word.
◆ A special-purpose type of parallel organization is the vector facility, which is
tailored to the processing of vectors or arrays of data.

Alternative Computer Organizations

An SMP(SYMMETRIC MULTIPROCESSORS)can be defined as a standalone computer
system with the following characteristics:
1. There are two or more similar processors of comparable capability.
2. These processors share the same main memory and I/O facilities and are
interconnected by a bus or other internal connection scheme, such that memory
access time is approximately the same for each processor.
3. All processors share access to I/O devices, either through the same channels or
through different channels that provide paths to the same device.
4. All processors can perform the same functions (hence the term symmetric).
5. The system is controlled by an integrated operating system that provides
interaction between processors and their programs at the job, task, file, and data
element levels.

An SMP organization has a number of potential advantages over a uniprocessor
organization, including the following:
• Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of the
same type.
• Availability: In a symmetric multiprocessor, because all processors can perform
the same functions, the failure of a single processor does not halt the machine.
Instead, the system can continue to function at reduced performance.
• Incremental growth: A user can enhance the performance of a system by
adding an additional processor.
• Scaling: Vendors can offer a range of products with different price and
performance characteristics based on the number of processors configured in the
system.

Symmetric Multiprocessor Organization

Tightly Coupled Multiprocessor

A multiprocessor operating system must provide all the functionality of a
multiprogramming system plus additional features to accommodate multiple
processors. Among the key design issues:
• Simultaneous concurrent processes: OS routines need to be reentrant to
allow several processors to execute the same IS code simultaneously. With multiple
processors executing the same or different parts of the OS, OS tables and
management structures must be managed properly to avoid deadlock or invalid
operations.
• Scheduling: Any processor may perform scheduling, so conflicts must be
avoided. The scheduler must assign ready processes to available processors.
• Synchronization: With multiple active processes having potential access to
shared address spaces or shared I/O resources, care must be taken to provide
effective synchronization. Synchronization is a facility that enforces mutual
exclusion and event ordering.
• Memory management: Memory management on a multiprocessor must deal
with all of the issues found on uniprocessor machines, the operating system needs
to exploit the available hardware parallelism, such as multiported memories, to
achieve the best performance.
The paging mechanisms on different processors must be coordinated to enforce
consistency when several processors share a page or segment and to decide on
page replacement.
• Reliability and fault tolerance: The operating system should provide graceful
degradation in the face of processor failure.The scheduler and other portions of the
operating system must recognize the loss of a processor and restructure
management tables accordingly.

To provide cache consistency on an SMP, the data cache often supports a
protocol known as MESI. For MESI, the data cache includes two status
bits per tag, so that each line can be in one of four states:
• Modified: The line in the cache has been modified (different from
main memory) and is available only in this cache.
• Exclusive: The line in the cache is the same as that in main memory
and is not present in any other cache.
• Shared: The line in the cache is the same as that in main memory and
may be present in another cache.
• Invalid: The line in the cache does not contain valid data.

MESI State Transition Diagram

• Process: An instance of a program running on a computer. A process embodies
two key characteristics:
—Resource ownership: A process includes a virtual address space to hold the
process image; the process image is the collection of program, data, stack, and
attributes that define the process. From time to time, a process may be allocated
control or ownership of resources, such as main memory, I/O channels, I/O
devices, and files.
—Scheduling/execution: The execution of a process follows an execution path
(trace) through one or more programs. This execution may be interleaved with
that of other processes. Thus, a process has an execution state (Running, Ready,
etc.) and a dispatching priority and is the entity that is scheduled and dispatched
by the operating system.
• Process switch: An operation that switches the processor from one process to
another, by saving all the process control data, registers, and other information
for the first and replacing them with the process information for the second.2
• Thread: A dispatchable unit of work within a process. It includes a processor
context (which includes the program counter and stack pointer) and its own data
area for a stack (to enable subroutine branching). A thread executes sequentially
and is interruptible so that the processor can turn to another thread.
• Thread switch: The act of switching processor control from one thread to
another within the same process.Typically, this type of switch is much less costly
than a process switch.

Thus, a thread is concerned with scheduling and execution, whereas a process is
concerned with both scheduling/execution and resource ownership.

Benefits that can be achieved with clustering:
• Absolute scalability: It is possible to create large clusters that far
surpass the power of even the largest standalone machines. A cluster
can have tens, hundreds, or even thousands of machines, each of which
is a multiprocessor.
• Incremental scalability: A cluster is configured in such a way that it
is possible to add new systems to the cluster in small increments.Thus,
a user can start out with a modest system and expand it as needs grow,
without having to go through a major upgrade in which an existing
small system is replaced with a larger system.
• High availability: Because each node in a cluster is a standalone
computer, the failure of one node does not mean loss of service. In
many products, fault tolerance is handled automatically in software.
• Superior price/performance: By using commodity building blocks,
it is possible to put together a cluster with equal or greater computing
power than a single large machine, at much lower cost.

Clustering Methods: Benefits and Limitations

Approaches to Vector Computation

RAID for an example of four data disks showing extra check disks

per RAID level and companies that use each level.

redundant arrays of inexpensive disks (RAID)

An organization of disks that uses an array of small and inexpensive disks so as to

increase both performance and reliability.

No Redundancy (RAID 0) - striping

Allocation of logically sequential blocks to separate disks to allow higher performance

than a single disk can deliver.

Mirroring (RAID 1)

Writing identical data to multiple disks to increase data availability.

Error Detecting and Correcting Code (RAID 2)

RAID 2 borrows an error detection and correction scheme most often used for

memories. Since RAID 2 has fallen into disuse, we’ll not describe it here.

Bit-Interleaved Parity (RAID 3)

The cost of higher availability can be reduced to 1/n, where n is the number of

disks in a protection group. Rather than have a complete copy of the original data

for each disk, we need only add enough redundant information to restore the lost

information on a failure. Reads or writes go to all disks in the group, with one extra

disk to hold the check information in case there is a failure. RAID 3 is popular in

applications with large data sets, such as multimedia and some scientific codes.

protection group

The group of data disks or blocks that share a common check disk or block.

Block-Interleaved Parity (RAID 4)
RAID 4 uses the same ratio of data disks and check disks as RAID 3, but they access
data differently. The parity is stored as blocks and associated with a set of data
blocks.

Small write update on RAID 4. This optimization for small writes reduces the number of disk accesses as well as the number of

disks occupied. This figure assumes we have four blocks of data and one block of parity. The naive RAID 4 parity calculation in

the left of the figure reads blocks D1, D2, and D3 before adding block D0? to calculate the new parity P?. (In case you were

wondering, the new data D0? comes directly from the CPU, so disks are not involved in reading it.) The RAID 4 shortcut on the

right reads the old value D0 and compares it to the new value D0? to see which bits will change. You then read the old parity P

and then change the corresponding bits to form P?. The logical function exclusive OR does exactly what we want. This example

replaces three disk reads (D1, D2, D3) and two disk writes (D0?, P?) involving all the disks for two disk reads (D0, P) and two disk

writes (D0?, P?), which involve just two disks. Increasing the size of the parity group increases the savings of the shortcut. RAID 5

uses the same shortcut.

Block-interleaved parity (RAID 4) versus distributed block-interleaved parity (RAID 5).

By distributing parity blocks to all disks, some small writes can be performed in parallel.

P + Q Redundancy (RAID 6)
Parity-based schemes protect against a single self-identifying failure.
When a single failure correction is not sufficient, parity can be generalized
to have a second calculation over the data and another check disk of
information. This second check block allows recovery from a second
failure. Thus, the storage overhead is twice that of RAID 5.

RAID Summary
RAID 1 and RAID 5 are widely used in servers; one estimate is that 80%
of disks in servers are found in a RAID organization.
One weakness of the RAID systems is repair. First, to avoid making the
data unavailable during repair, the array must be designed to allow the
failed disks to be replaced without having to turn off the system.

hot-swapping
Replacing a hardware component while the system is running.
standby spares
Reserve hardware resources that can immediately take the place of a
failed component.

