
Gallop cross VHDL

1Rajda © 2023 Institute of Electronics, AGH UST

Module: Electronics & Telecommunications, 3rd year

Digital Systems Design with
Hardware Description Languages

Agenda

Design units
entity, architecture , configuration, package

Lexical elements
literals, identifiers, objects, expressions

Structural description
map, generate

Sequential statements
process, wait, if, case, loop, next, exit, assert, function, procedure

Concurrent statements
assignments: unconditional, conditional and selected, subprograms, block

Composite types
arrays: one-dimensional and multidimensional

2Rajda © 2023 Institute of Electronics, AGH UST

Design units

Work library

VHDL
compiler

Design units Library

entity
architecture
configuration
package

entity
architecture
configuration
package

3Rajda © 2023 Institute of Electronics, AGH UST

Design units

entity and architecture statements

-- entity declaration defines the interface between
-- a given design entity and its environment
entity ENTITY_NAME is

port (
< PORT_NAME: <mode> <type>; >
);

end ENTITY_NAME;

-- an architecture body specifies the relationship
-- between the inputs and outputs of a design entity
architecture ARCH_NAME of ENTITY_NAME is
begin

<statements>
end ARCH_NAME;

4Rajda © 2023 Institute of Electronics, AGH UST

Design units

entity and architecture statements

entity
xyz

architecture
beh of xyz
(behavioral)

architecture
dat of xyz
(dataflow)

architecture
str of xyz
(structural)

-- comparator exapmple

entity COMPARE is
port (A,B: in bit;

C: out bit);
end COMPARE;

5Rajda © 2023 Institute of Electronics, AGH UST

Design units

architecture statement – behavioral style

architecture arch_behavioral of COMPARE is
begin

process (A,B) -- A,B - signals “active” in process
begin -- sequential assignment operators <=

if (A=B) then
C <= ‘1’ after 1 ns;

else
C <= ‘0’ after 1 ns;

end if;
end process;

end arch_behavioral;

Set of sequential operations, describing the behaviour of a model.

6Rajda © 2023 Institute of Electronics, AGH UST

Design units

architecture statement – dataflow style

architecture arch_dataflow of COMPARE is
begin – concurrent assignment operators <=

C <= not (A xor B) after 1 ns;
end arch_dataflow

Set of concurrent assignments, describing the flow of data.

7Rajda © 2023 Institute of Electronics, AGH UST

Design units

architecture statement – structural style

architecture arch_structural of COMPARE is
signal I: bit;

component XOR2 port (x,y: in bit; z: out bit);
end component;
component INV port (x: in bit; z: out bit);
end component;

begin
U0: XOR2 port map (A,B,I);
U1: INV port map (I,C);

end arch_structural;

Set of connected modules, describing the structure of a model.

8Rajda © 2023 Institute of Electronics, AGH UST

Design units

configuration statement

• allows choosing one of the architectures for a given entity

• provides a convenient way of documenting the project versions

• eliminates the need to recompile the entire project

when you need to change only a few components

configuration TESTBENCH_FOR_top of top_tb is

for TB_ARCHITECTURE

for UUT : top

use entity work.top(structure);

end for;

end for;

end TESTBENCH_FOR_top;

name of
configuration

entity being
configured

architecture being configured

architecture
chosen

name of
library

component being configured

9Rajda © 2023 Institute of Electronics, AGH UST

Design units

package statement

package STANDARD

In every VHDL tool, this package defines, among others, data types,

such as: bit, boolean, bit_vector, character,
string, text etc.

Groups together the common: declarations, subprograms, components

or types.

package my_constans is
constant unit_delay: time := 1 ns;

end my_constans;

Y <= ‘0’ after work.my_constans.unit_delay;

10Rajda © 2023 Institute of Electronics, AGH UST

Lexical elements

• literals
inscriptions which represent the data, the way they are

written implies all their properties, including their value

• identifiers (names)
strings of letters and digits, identifying the objects

• objects
signals, variables, constants, parameters

• expressions
formulas including operators and arguments, determining

the way of calculation or specification of values

11Rajda © 2023 Institute of Electronics, AGH UST

Lexical elements

Literals

Single literals (scalars)

‘U’ uninitialized

‘X’ forcing an unknown

‘0’ forcing 0

‘1’ forcing 1

‘Z’ Hi-Z

‘W’ weak unknown

‘L’ weak 0

‘H’ weak 1

‘-’ don’t care

character - single character between apostrophes, eg: ‘A’ or ‘a’
bit - represents the binary value‘1’ or ‘0’
std_logic - represents the value of the signal by IEEE 1164:

12Rajda © 2023 Institute of Electronics, AGH UST

Lexical elements

Literals

boolean - represents two discrete values:

true TRUE True
false FALSE False

real - represents a floating-point value, eg: 1.3 or

-344.0E+23, typically from -1.0E+38 to 1.0E+38

with a precision of at least six digits after the decimal point

integer - represents an integer value, eg: +1, 862 or -257,

+123_456, 16#00FF#, typically from -2,147,483,647 to

+ 2,147,483,647
time - represent the only physical quantity defined, i.e. time:

62 fs, (ps, ns, us, ms, sec, min, hr)

Multiple literals (arrays, vectors)

string - string of characters, covered by quotes, eg: "x", "T hold"
bit_vector - "0001_1100", x"00FF"
std_logic_vector - "101Z", "UUUUUU"

13Rajda © 2023 Institute of Electronics, AGH UST

Lexical elements

Literals

Decimal literals:
14
7755
156E7
188.993
88_670_551.453_909
44.99E-22

Based literals:
16#FE# -- 254
2#1111_1110# -- 254
8#376# -- 254
16#D#E1 -- 208
16#F.01#E+2 -- 3841.00
2#10.1111_0001#E9 -- 1506.00

Physical literals:
60 sec
100 m
5 kohm
177 A b"11111110" - binary representation

B"1111_1110" - equivalent binary representation

x"FE" - equivalent hexadecimal representation

O"376" - equivalent octal representation

14Rajda © 2023 Institute of Electronics, AGH UST

Lexical elements

Identifiers, ranges

Basic identifiers

Must begin with a letter. Subsequently there may occure letters,

numbers or underscore (_). Underscore may not be the last character,

nor there may be two neighbouring underscores. VHDL is not the case

sensitive: XYZ <=> xyz. Identifiers may not be the same as keywords

(approximately 100).

Example: XYZ, X3, S(3), S(1 to 4), my_defs.

The range of variability of the type can be limited:

range {low_val to high_val | high_val downto low_val}

np: integer range 1 to 10;
real range 1.0 to 10.0;

15Rajda © 2023 Institute of Electronics, AGH UST

Lexical elements

Declarations, signal declarations

Most of the objects must be declared explicitly. Some objects (eg,

iteration identifiers in a loop, signals arising from other signals by the use

of attributes) are declared implicitly.

Declaration of objects (their names and types) include declarations of:

constants, variables, signals, or files.

Signal declarations

• scalar: signal name(s): type[range][:= expression];
• array: signal name(s): array_type [(index)][:= expression];

• as a port (eg, scalar):
port (name(s): direction type [range][:= expression];…);

16Rajda © 2023 Institute of Electronics, AGH UST

Lexical elements

Variable declarations

Variable declarations (within the process)

• scalar:
variable name(s): type[(range)][:= expression];

• array:
variable name(s): array_type [(range)][:= expression];

eg:
variable Index: integer range 1 to 50;
variable Cycle: time range 10ns to 50ns := 10ns;
variable MEMORY: bit_vector (0 to 7);
variable x,y: integer;

VHDL’93 introduced a shared variable

for communication between processes.

17Rajda © 2023 Institute of Electronics, AGH UST

Lexical elements

Expressions

Arguments of expressions must respond
in terms of the types

Types coversions:

integer (3.0) integer
real (3) real
integer * time time
nanos + picos time
nanos / picos integer

variable My_Data, My_Sample: integer;
...
My_Data := integer(74.94 * real(My_Sample));

Vector <= CONV_STD_LOGIC_VECTOR(Integer_Variable);

18Rajda © 2023 Institute of Electronics, AGH UST

Lexical elements

Operators

Operators in expressions:

logical and or nand nor xor not
relational = /= < <= > >=
concatenation&
arithmetic + - * / **

mod rem abs
shift (’93) sll srl sla sra rol ror xnor

Required types of arguments:

the same : and or nand nor xor not
= /= < <= > >= + - * /

integer : mod rem

integer exp : **
numerical : abs

19Rajda © 2023 Institute of Electronics, AGH UST

Structural description

architecture STRUCT of RS_FLOP is
-- component declaration

component NOR2 port (A,B: in bit; X: out bit);
end component;

begin
-- component instantiation

U1: NOR2 port map (RESET,Q_INV,Q);
U2: NOR2 port map (Q,SET,Q_INV); -- positional association

end STRUCT;

-- or named association, eg:
-- U1: NOR2 port map (A => RESET, X => Q, B => Q_INV);

RESET

Q_INV

Q

SET

U1

U2

20Rajda © 2023 Institute of Electronics, AGH UST

Sequential statements

• process (concurrent!)

• sequential assignment

• wait
• if
• case
• null
• loop
• next
• exit
• assert

• subprograms

21Rajda © 2023 Institute of Electronics, AGH UST

Sequential statements

process statement

• is a concurrent statement!

• defines a part of an architecture, where instructions are interpreted

sequentially

• containes only sequential statements

• must contain either a list of signals that activate (ie, sensitivity list)

or wait instruction,

• provides the ability to 'programing-like' definition of behaviour

• has the ability to change the signals defined in architecture
and / or entity

signal

signal

Process M

wait for
the change
of input
signal

signal signal

Process N

variable

variable

22Rajda © 2023 Institute of Electronics, AGH UST

Sequential statements

process statement

assignment statement

Syntax:

[label:]

process [(sensitivity list)]

[subprograms]

[types]

[constants]

[variables]

[other declarations]

begin
sequential statements

end process [label];

Variable asignment statement
variable:= expression;

Signal asignment statement
signal <= expression[after delay];

23Rajda © 2023 Institute of Electronics, AGH UST

Sequential statements

wait statement

Syntax:
wait [on sensitivity list]

[until condition]

[for time-expression]

Examples:
wait on a,b; -- process activation
wait until x > 10;
wait for 10 ns;
wait; -- waits forever

The following scripts are equivalent :

process process (a,b);
... ...
wait on a,b; <=> ...

end process; end process;

24Rajda © 2023 Institute of Electronics, AGH UST

Sequential statements

if statement

Syntax:
if condition then sequential_statements;

[elsif condition then sequential_statements] ;
[else sequential_statements];

end if;

Example:
process(R, CLK)
begin

if R = '0' then
operand(7 downto 0) <= "00000000";

elsif CLK = '1' and CLK'event then
operand(7 downto 0) <= DATAB;

end if;
end process;

25Rajda © 2023 Institute of Electronics, AGH UST

Sequential statements

case statement

Especially convenient to decode: the codes, the states of finite state

machine or the buses states.

Syntax:
case expression is

when val => sequential_statements;
[when val1 | val2 => sequential_statements;]

[when val3 to val4 => sequential_statements;]

[when others => sequential_statements;]

end case;

Example:
case BCD_int is

when 0 => LED <= "1111110";
when 1 => LED <= "0110000";
...

end case;
26Rajda © 2023 Institute of Electronics, AGH UST

Concurrent statements

• signal assignment statements
• unconditional
• conditonal
• selected

• subprograms

• block

27Rajda © 2023 Institute of Electronics, AGH UST

Concurrent statments

Unconditional signal assignment

In both examples below, the result of the assignment is the same:

architecture sequential of MULTIPLEXER is
begin

process (A,INDEX)
begin

OUTPUT <= A (INDEX); -- sequential
end process;

end sequential;

architecture concurrent of MULTIPLEXER is
begin

OUTPUT <= A (INDEX); -- concurrent
end concurrent;

28Rajda © 2023 Institute of Electronics, AGH UST

Concurrent statments

Conditional signal assignment

Syntax:

signal <= {expression_1 when condition else} expression_2;

Example:

DATA <= ROM when ADR < x"2000" else
RAM when ADR < x"6000" else
"ZZZZZZZZ";

Analogous to the sequential if statement, but:

• execute without taking the order into account,

• used in dataflow i structural description styles,

• are synthesizes to the combinational logic.

Note! Can not be used inside the process.

29Rajda © 2023 Institute of Electronics, AGH UST

Concurrent statments

Selected signal assignment

Syntax:

with expression select
signal <= {expression when choices,};

Example:

with digit select
out <= '1' when 0 | 9,

'0' when 1 to 8,
'Z' when others;

Analogous to the sequential case statement.

Note! Can not be used inside the process.

30Rajda © 2023 Institute of Electronics, AGH UST

Advanced data types

• Predefined types

• Extended Types
– Enumerated Types

– Subtypes

• Composite Types
– Arrays

– one-dimensional (vectors)

– multidimensional

– Records

• Other Predefined Types
– Files

– Lines

31Rajda © 2023 Institute of Electronics, AGH UST

Advanced data types

Arrays

• Consist of elements of the same type.

• Used to describe the buses, registers and other sets of hardware

components.

• Array elements can be scalars or other composite objects.

(It is not possible to create eg arrays of files!)

• Access to the specific elements through the use

of pointers.

The only predefined array types are:

• bit_vector (package STANDARD)
• string (package STANDARD)
• std_logic_vector (package STD_LOGIC_1164)

If needed, the user has to declare the new types of arrays for the

real and integer elements himself.

32Rajda © 2023 Institute of Electronics, AGH UST

Advanced data types – Arrays

Vectors – index range declaration

The way of access depends on the way of declaration.

Examples:
variable c: bit_vector (0 to 3);
variable d: bit_vector (3 downto 0);
c := “1010”;
d := c;

1 0 1 0

c(0) c(1) c(2) c(3)

d(3) d(2) d(1) d(0)
b(4 to 7) any range

c(4) index out of range

c(1.0) wrong type of index

33Rajda © 2023 Institute of Electronics, AGH UST

Advanced data types – Arrays

Vectors – assignments

Example: for the bit_vector type:

c := “1010”; constant of the bit_vector type

c := x“A”; as above, note the length!

c := S & T & M & W; 4 concatenated 1-bit signals

c := (‘1’,‘0’,‘1’,‘0’); 4-bit aggregate

c := 10; forbidden

Vector slices

Assignments may be executed between the slices (fragments) of vectors.

Examples:
variable a: bit_vector (3 downto 0);
variable c: bit_vector (8 downto 1);
c(6 downto 3) := a;

c(6 downto 3), not the c(3 to 6) - direction of the indexes must be

the same as in the declaration!

34Rajda © 2023 Institute of Electronics, AGH UST

Advanced data types – Arrays

Vectors – aggregates

Literal may contain a list of array elements in positional and / or named

association, creating the so-called aggregate.

Syntac:
[type_name’] ([choice =>] expression1 {,[others =>] expression2})

Examples:
variable a,b: bit := ‘1’;
variable x,y: bit_vector (1 to 4);
-- positional association
x := bit_vector’(‘1’,a nand b,‘1’,a or b);
-- named association
y := (1 => ‘1’,4 => a or b,2 => a nand b,3 => ‘1’);

=> read: “receives”

35Rajda © 2023 Institute of Electronics, AGH UST

Advanced data types – Arrays

Vectors – aggregates

Using the named association, [choice =>] points to the one or many elements.

[choice =>] may include an expression (eg: (i mod 2) =>),

pointing to one element or contain the range (eg: 3 to 5 =>
or 7 downto 0 =>), pointing to the sequence of elements.

The positional association has to be used before the named one.

Example:
variable b: bit;
variable c: bit_vector (8 downto 1);
c := bit_vector’(‘1’,b,5 downto 2 =>‘1’,others =>‘0’);

Very convenient and frequently used:
Counter <= (others => ‘0’);
Data_Bus <= (others => ‘Z’);

36Rajda © 2023 Institute of Electronics, AGH UST

To be continued…

37Rajda © 2023 Institute of Electronics, AGH UST

