Module: Electronics, 3rd year
Digital Systems Design with
Hardware Description Languages

Logic synthesis

Introduction to the synthesis
Synthesis of the basic elements

Hardware representation
of VHDL objects

Synthesis of complex circuits
Synthesis of types
Non-synthesizable structures

fly e

AGH

* A VHDL Synthesis primer” J.Bhasker,
* wWHDL A Logic Synthesis Approach” D.Naylor, S.Jones,

* wWHDL Coding and Logic Synthesis with SYNOPSIS”
W.F.Lee,

* ,Reuse Methodology Manual” M.Keating, P.Bricaud,

* Synthesis and Simulation Design Guide” (Xilinx manual)

* ,Xilinx Synthesis Technology (XST) User Guide”
(Xilinx manual)

e ,Digital System Design with VHDL” M.Zwolinski
(translated: ,, Projektowanie uktadow cyfrowych
z wykorzystaniem jezyka VHDL”)

Synthesis & implementation
]JJ Xilinx CPLD/FPGA Design

Design Verification

Functional
Simulation
Design
Synthem_
Static Timing

Design Analysis

Implementation

Back Timing
Annotation Simulation

Download to a In-Circuit
Xilinx Device Verification

Synthesis & implementation
Design in Active-HDL environment

Active-HDL

Creating Desian
Resources:

External Tools

_____ Initial WHDOL
Description

®* Source Files
®* Test Benches
= facro Files

Compilation

Functional
Simulation

Additional

Synthesized Metlist

Exported Into WHDL Logic Synthesis

Functional
Simulation

i

Tools

Structural YHDL
Exported from the
Routed Design

+ SDF Files

Timing 3
Simulation h

@eﬁnd Route
Tools

Synthesis & implementation
]JJ Design in Active-HDL environment: Designh Flow

External tools . e e 3 functonal

simulation 5

for synthesis
and implementation

Graphical shell
by selecting option:

Tools/Preferences/ | : e
Environment / Flows / e — ; : sim |_1|.-51_t:i:-:::-r| =
Integrated Tools - !

and

View/Flow

Synthesis of the basic elements
]JJ Arithmetic and logical operators

M

AGH

architecture behavioral of AND gate is
begin
process (A, B) -—- synthesized AND gate
begin
if A= 'l and B = '1’ then
X <= ‘1’;
else
X <= ‘0",
end if;
end behavioral;

architecture inferred of AND gate is

begin -- inferred AND gate
X <= A and B; -—- from the library of
end inferred; -—- presynthesized elements
Inferred and or xor not nor nand xnor

operators : + - * / = /= > >= << <= ...

Tri-state buffer

“]JJ Synthesis of the basic elements

architecture behavioral of TRI STATE buffer is
begin
process (A, OE)
begin
if OE = ‘1’ then OFE
X <= A;
else A
X <= ‘Z’;
end if;
end behavioral;

architecture inferred of TRI STATE buffer is
begin

X <= A when OE = '1l’ else ‘Z’;
end inferred;

architecture concurrent of

AGH
begin
code <= "0001"
"001l0"
"0100"
"1000"
110000" .

end concurrent;

C, =S,

G =33
C, =5,5,5,
G =5051525;

Note the logical functions implemented in LUTs!

Synthesis of the basic elements
Priority encoder

when
when
when
when

sel (0)
sel (1)
sel (2)
sel (3)

else
else
else
else

PRIORITX_encoder is

So » C
S,
S,
S3

Synthesis of the basic elements
]JJ Priority encoder

M

AGH
architecture behavioral of PRIORITY encoder is
begin
process (A, B, C)
begin
if A = ‘1’ then -—- A: signal coming with
X <= '1"; - - large delay
elsif B = ‘1’ then
X <= ‘0",
elsif C = ‘1’ then
X <= '1";
else C
X <= ‘0",
end if; X
B

end behavioral;

Z

A

Note the logical functions implemented in LUTs!

Logic synthesis
M]JJ Hardware representation of VHDL objects
AGH

An object - signal or variable - may be
represented as:

o flip-flop

(edge-triggered memory element)
e latch

(level-triggered memory element)
e wire

(combinatorial element)

Logic synthesis /
m UJ Hardware representation of VHDL o_bjgcj;-'f-- .

A G H ' . r' ,lg"-l'r ﬂ"’l.; 'Ilr):’.-.'.

Hardware representation of objects
]JJ Synthesis of D-type flip-flop

M

AGH

Process containing sensitivity list:
process (CLK)

begin --rising edge
if CLK = '1l’ and CLK’event then
Q <= A and B;
end if;

end process;

Process containing wait statement
process
begin --falling edge
wait until not CLK = '1l’ and CLK’event;
Q <= A and B;
end process;

Do not combine edge detection with other conditions:
if CLK’event and CLK = ‘1’ and CE = ‘1’ then

Concurrent conditional assignment (not recommended):
Q <= A and B when CLK’event and CLK = ‘1’;

Hardware representation of objects
]JJ Flip-flop with Clock Enable input

GATECLK <= IN1l and IN2 and CLK;
process (GATECLK)

begin
i1f GATECLK' event and GATECLK = ‘1’ then
if LOAD = '1’ then
OUT1 <= DATA;
end if;
end if;

end process;

DATA [DFF
—
LOAD [> D Q ouT
o CE

IN1 GATECLK

IN2 [>—— C

CLK

AND3

Hardware representation of objects
]JJ Flip-flop with Clock Enable input

ENABLE <= IN1l and IN2 and LOAD;
process (CLK)

begin
if CLOCK’ event and CLOCK = '1’ then
if ENABLE = ‘1’ then
OUT1 <= DATA;) ‘
end if; D 1] |P Q
enzndr;:é35° CE
P ’ C >

pAaTA [a

INT [>»—— DFF
D a1 > ourt
IN2 ENABLE
LOAD [>— CE

AND3

cLock [_» be

Hardware representation of objects
]JJ Synthesis of Set / Reset inputs

M

AGH
process (CLK)
begin
if CLK and CLK'event then
if SET = ‘1’ then -—- synchronous SET
Q <= '1’; o
else
Q <= A and B;
end if;
end if;
end process;
process (CLK, RESET) -— RESET in sensitivity list!
begin
if RESET = '1’ then —- asynchronous RESET
Q <= '0";

elsif CLK and CLK'event then
Q <= A and B;
end if;
end process;

Hardware representation of objects
]JJ Synthesis of D-type latch

AGH
Process containing sensitivity list :
process (CLK, A, B) -- list of all signals...
begin -- ...used in the process
if CLK = '1’ then -—- active high
Q <= A and B;
end if;

end process;

Concurrent conditional assignment (not recommended):
Y <= A and B when CLK = '1’;

Unintentional synthesis of latch

“]JJ Hardware representation of objects

AGH
process (A, B, C, SEL) process (A, B, C, SEL)
begin begin
if SEL = “00” then if SEL = “00” then
Y <= A; Y <= A;
elsif SEL = ”“01” then elsif SEL = ”“01” then
Y <= B; Y <= B;
elsif SEL = ”“10” then elsif SEL = ”“10” then
Y <= C; Y <= C;
end if; elsif SEL = ”7"11” then
end process; Y <= ‘0’ ;
end if;
Problem: end process;
synthesis of latch as a result of
incomplete specification of Solution:
options (for SEL = 11" specifying all the possibilities
combination, the last value will (also in the case statement - here
be hold by default, which will you can use the default specification
imply a memory element). clause when others).

Hardware representation of objects
]JJ Signals and variables

M

AGH
signal A,B,C,D: bit a TMP
NO MEMORY: process (A,B,C) B D
variable TMP: bit;
begin C
TMP:= A and B;
D <= TMP or C; Synthesis of TMP : wire

end process;

signal A,B,C: bit

IS IT LATCH: process (A,B,C)
variable TMP: bit;
begin
C <= TMP and B;
TMP := A or C; Synthesis of TMP : latch ?!

end process;

Hardware representation of objects
]JJ Signals and variables

M

AGH

signal Qaux: ... Qaux
FFx2: process (clk) D — Q
begin

> -—1>

Q <= Qaux;
end process; Synthesis : 2 flip-flops
FFxl: process (clk) Qaux

variable Qaux: ... D — Q
begin

T

Qaux := D; clk

Q <= Qaux;
end process; Syntesis : 1 flip-flop

Synthesis of complex circuits
m]JJ Logical operators
AGH

entity logical ops is . —
port (a, b, ¢, d: in bit; m: out bit); .o | j—

end logical ops; ::j:>__%

architecture example of logical ops is ;
signal e: bit;

begin
m <= (a and b) or e;
e <= c xor d;

end example;

-
I\\?

0 D—_: o
b 0 i
entity logical bit is T .
port (a, b: in bit wvector (0 to 3); S)
m: out bit vector (0 to 3));
end logical bit “fEb———:__} o
b2
architecture example of logical bit is L
beg:l.n :_i D ! s
m <= a and b; =

end example;

Synthesis of complex circuits
m]JJ Relational operators
AGH

entity relational equ is
port (a, b: in bit vector (0 to 3);
m: out boolean) ;
end relational equ;

architecture example of relational equ is
begin

m <= a = b;
end example;

?':B:>_ a:b

entity relational mag is
port (a, b: in integer range 0 to 15;
m: out boolean) ;
end relational mag;

architecture example of relational mag is
begin

m <= a >= b;
end example;

Synthesis of complex circuits
]JJ Arithmetic operators

AGH
package example arithmetic is "
type small int is range 0 to 7;
end example arithmetic; Ig——j[} =
use work.example arithmetic.all;
)
entity arith is — .
port (a, b: in small int; i [—
m: out small int); Tj}*
end arith; '[____ —

architecture example of arith is

begin

.
E- I e
m <= a + b; =
end example; . iﬁi ;

Note the hard-macros of adders (and multipliers!)

Synthesis of complex circuits
]JJ Selection statements

Sequential selection statements
e conditional signal assighnment: if. ..

o selected signal assignment: case. ..
Concurrent selection statements

o conditional signal assignment: when. ..
o selected signal assignment: with. ..

\ v

Synthesis of complex circuits
]JJ Sequential selection statements: 1 £

M

AGH

entity control stmts is

port (a, b, ¢: in boolean; m: out
boolean) ;

end control stmts;

architecture example of control stmts
is
begin
process (a, b, c)
variable n: boolean;
begin T
if a then 1 1
n := b;
else
n := c;
end if;
m <= n; =
end process; :
end example;

|}
iy
¥

Synthesis of complex circuits
m]JJ Sequential selection statements : case

AGH

entity control stmts is

port (sel: bit vector (0 to 1); a,b,c,d: bit;
m: out bit);

end control stmts;

architecture example of control stmts is cCase
begin .
process (sel,a,b,c,d) =
. . [
begin .-

case sel 1is
when b"00" => m <= c; .
when b"01" => m <= d; :5}1—-)
when b"10" =>m <= a; }J__ ::}_L_

when others => m <= b; _
end process;
end example; ﬁ———::}J__

Synthesis of complex circuits
m]JJ Concurrent selection statements : when / with
AGH

entity control stmts is

port (a, b, c¢: in boolean; m: out boolean) ;
end control stmts;
architecture example of control stmts is
begin

m <= b when a else c;
end example;

entity control stmts is
port (sel: bit vector (0 to 1); a,b,c,d: bit; m: out bit);
end control stmts;
architecture example of control stmts is
begin
with sel select
m <= ¢ when b"00",
m <= d when b"01",
m <= a when b"10",
m <= b when others;
end example;

Synthesis of complex circuits
]JJ Logic replication — 1loop

M

AGH

entity loop stmt is
port (a: bit vector (0 to 3);

m: out bit vector (0 to 3));
end loop stmt;

architecture example of loop stmt is
begin
process (a)]_cjch;

variable b: bit;

begin = : n_1
b :="'1";

for i in 0 to 3 loop Al
b := a(3-i) and b; = j =9
m(i) <= b;
end loop; Ef ™ E§
end process; S
end example; = =

Synthesis of complex circuits
m]JJ Logic replication - subprogram
AGH

entity subprograms is
port (a: bit vector (0 to 2);

m: out bit vector (0 to 2));
end subprograms;

architecture example of subprograms is

function simple (w, x, y: bit) return bit is

begin
return (w and x) or y;

end; subprogram

begin = n_
process (a) D—_Z;
begin -~

m(0) <= simple(a(0), a(l), a(2));: w

m(l) <= simple(a(2), a(0), a(l));

m(2) <= simple(a(l), a(2), a(0)); = .
end process; __;}__Ezi:>——5

end example;

Synthesis of complex circuits
]JJ Shifters

Sequential (shift register):
e with concatenation operator (&)

shreg <= shreg (6 downto 0) & SI;
e with loop statemnet for...loop
for i in 0 to 6 loop
shreg(i+l) <= shreg(i);

end loop;
shreg (0) <= SI;
o with shift operators (s11, srl, ...)

Combinatorial (barrel shifter):
o with shift operators (s11, srl, ...)
with SEL select
SO <= DI when "00",

DI sl11 1 when "O01",
DI sll 2 when "10",
DI sll1 3 when others;

e with concatenation operator (&)

Synthesis of complex circuits
Memories

AGH

e inferred or instantiated

e implemented as a distributed or block memories
(depending on the size, speed and occupied area)

e synchronous (optionally with asynchronous read - distributed)
e RAM (also initialized) or ROM
e also used for combinatorial logic and FSMs

Method Advantages Disadvantages

Inference = Most generic way to incorporate + Requires specific coding styles
RAMSs info the design, allowing

easy/automatic design migration * Notall RAMs modes are supported

from one FPGA family to another » Gives vou the least control over
e FAST simulation implementation
CORE Generator software Gives more contrel over the EAM * May complicate design migration
creation from one FPGA family to another
* Slower simulation comparing fo
Inference
Instantiation Offers the most control over the * Limit and complicates design
implementation migration from one FPGA family
to another

. Eequj_res mulﬁple instantiations
to pruperlj: create the right EAM
configuration

Synthesis of types
JJJ integer type

e Types and subtypes, which may represent negative values
in range, are encoded in the Two's Complement code.

e Types and subtypes, which represent only positive values
in range, are encoded in the Natural Binary Code.

e The number of bits used depends on the largest allowable
value for the object.

-- binary encoding having 7 bits
type int0 is range 0 to 100;

type intl is range 10 to 100;

-- 2's complement encoding having 8 bits (including sign)
type int2 is range -1 to 100;

-- binary encoding having 3 bits
subtype int3 is int2 range 0 to 7;

Synthesis of types
]JJ integer type

type short is integer 0 to 255;
subtype shorter is short range 0 to 31;
subtype shortest is short range 0 to 15;

signal opl, op2, resl: shortest;
signal res2: shorter;
signal res3: short;

begin
resl <= opl + op2; -- truncate carry
res2 <= opl + op2; -- use carry
res3 <= opl + op2; -- use carry and zero extend

Synthesis of types
]JJ Enumerated types

M

AGH
Declaration: ... IS synthesized as:
type direction is (left, right, up, down); -—- two wires
type cpu op is (execute, load, store); -- two wires
-- the encoding of 11 is a "don't care"
subtype mem op is cpu op range load to store; -- two wires
-- the encodings of 00 and 11 are "don't cares"
-—- User Defined Encoding A
attribute enum encoding: string; -‘
attribute enum encoding of cpu op: type is
"001" & -- execute
"010" & -- load

"100"; -—- store

Synthesis of types
JJJ Enumerated and other types

e During synthesis the enumerated types are coded
binary by default. Subsequent elements (L) of the
enumerated type receive subsequent values, the first
from the left receives value zero.

e Number of bits (N) of an object that represents the
enumerated type will be the smallest possible number,
satisfying the condition: L <= 2"

e Dbit & boolean types are synthesized as scalar
e character type is synthesized as 8-bit vector

Synthesis of types
m]JJ std logic 1164 type
AGH

Recommended, because:

e large number of values (9), describing most of the real
states in digital systems,

e is automatically initialized to the value of 'U' - this forces
a designer to initialize objects explicitly.
Do not overcome this feature by initialization of signals
and variables in their declaration - circuit that cannot be

initialized may be obtained after synthesis in the result
of such an approach.

e easy integration with other modules - eg. integer type

can be synthesized, but the simulation will require
executing time-consuming conversion functions.

o after synthesis and implementation there is only
std logic type
'Rajda © 2023 Institute of Electronics, AGHUSsT 36

Synthesis of FSMs
m]JJ FSM states encoding algorithms
AGH
e Auto

selects the needed optimization algorithms during the synthesis process

e (One-Hot

ensures that an individual state register is dedicated to one state. Only one flip-flop
is active (hot) at any time. Very appropriate with most FPGAs where a large number
of flip-flops are available. Also a good alternative to optimize speed or to reduce power.

e (Compact
minimizes the number of state variables and flip-flops. Appropriate when optimizing area.

e Sequential
consists of identifying long paths and applying successive radix two codes
to the states on these paths. Next state equations are minimized
o Gray
guarantees that only one state variable switches between two consecutive states.
Appropriate for controllers exhibiting long paths without branching

e Johnson
much like Gray option. Shows benefits with FSM containing long paths with no branching.

e User
causes the synthesis tool to use the encoding defined in the source file
e Speedl

oriented for speed optimization. The number of bits for a state register depends on the
particular FSM, but generally it is greater than the number of FSM states.

Synthesis
XST Synthesis Options

Auto v
One-Hot
Compact
Sequential
| General' /IS Project |,/ Std Synthesis | | Adv Synthesis |, /HDL 1'/HDL 21,/ Xilinx Specific’/ Indude Dirs |, Libr [<[[>] f;::m
FSM Encoding Algerithm Auto j User
Speedl
=afe Implementation Mo j Mone
Case Implementation Style Mone j
¥ Resource Sharing
FSM Style LT j

¥ RAM Extraction

RAM Style Auta | ~ — e
¥ ROM Extraciion .

Distributed

Blodk

ROM style futo j

[~ Automatic BRAM Packing

Synthesis
]JJ Non-synthesizable structures

e timing clauses:
- assignments (after, transport, inertial)

-walit for

o floating-point data types (real)

o file operations - reduced:
- read: memory initialization from file

- write: debug

I

|]

