Module: Electronics & Telecomunication, 5rd year
ul JJJ Programmable Logical Devices

AGH

Gallop cross VHDL

I agenas

AGH

Design units

entity, architecture, configuration, package

Lexical elements

literals, identifiers, objects, expressions

Structural description

map, generate

Sequential statements

process, wait, if, case, loop, next, exit, assert, function, procedure

Concurrent statements

assignments: unconditional, conditional and selected, subprograms, block

Composite types

arrays: one-dimensional and multidimensional

T

AGH
Design units Library
r Y
entity)
architecture entity
configuration || architecture

configuration

ackage ||
P g package

-

Design units
m JJJ entity and architecture statements
AGH

-- entity declaration defines the interface between
-- a given design entity and its environment
entity ENTITY NAME is
port (
< PORT_NAME: <mode> <type>; >
)
end ENTITY NAME;

-- an architecture body specifies the relationship
-- between the inputs and outputs of a design entity
architecture ARCH NAME of ENTITY NAME is
begin

<statements>
end ARCH NAME;

Design units
m JJJ entity and architecture statements

AGH
entity
Xyz
architecture architecture
dat of xyz str of xyz
(dataflow) (structural)

-- comparator example

entity COMPARE is
port (A,B: in bit;
C: out bit);
end COMPARE;

Design units
m JJJ architecture statement - behavioral style
AGH

architecture arch_behavioral of COMPARE is
begin
process (A,B) -- A,B - signals “active” in process

begin -- sequential assignment operators <=
if (A=B) then
C <= '1l’ after 1 nmns;
else
C <= ‘0’ after 1 ns;
end if;
end process;
end arch _behavioral;

Set of sequential operations, describing the behaviour of a model.

Design units
lll JJJ architecture statement - dataflow style
AGH

architecture arch_dataflow of COMPARE is

begin - concurrent assignment operators <=
C <= not (A xor B) after 1 ns;

end arch _dataflow

Set of concurrent assignments, describing the flow of data.

Design units
lll JJJ architecture statement - structural style
AGH

architecture arch_structural of COMPARE is
signal I: bit;
component XOR2 port (x,y: in bit; z: out bit);
end component;
component INV port (x: in bit; z: out bit);
end component;
begin
U0: XOR2 port map (A,B,I);
Ul: INV port map (I,C);
end arch_structural;

Set of connected modules, describing the structure of a model.

mmJJJ Structural description

AGH

RESET b. 0

O Q_INV
SET
architecture STRUCT of RS_FLOP is
-- component declaration
component NOR2 port (A,B: in bit; X: out bit);
end component;
begin
-- component instantiation
Ul: NOR2 port map (RESET,Q INV,Q);
U2: NOR2 port map (Q,SET,Q INV); -- positional association
end STRUCT;

-- or named association, eg:
-- Ul: NOR2 port map (A => RESET, X => Q, B => Q INV);

Design units
m JJJ configuration statement
AGH

+ allows choosing one of the architectures for a given entity
* provides a convenient way of documenting the project versions
* eliminates the need to recompile the entire project

when you need to change only a few components

name of entity being
configuration configured

configuration TESTBENCH_FOR_top of top_tb is
for TB—ARCHITECTURE architecture being configuréd
for UUT : top —

component being configured

use entity work.top (structure);

end for;

end for; Lame of architecture
library chosen

end TESTBENCH_FOR_top;

[ep—

AGH

Groups together the common: declarations, subprograms, components
or types.

package my constans is
constant unit_delay: time := 1 ns;
end my_ constans;

Y <= ‘0’ after work.my constans.unit delay;

package STANDARD

In every VHDL tool, this package defines, among others, data types,

such as: bit, boolean, bit vector, character,
string, text etc.

I cexicat ctements

AGH

e literals
inscriptions which represent the data, the way they are
written implies all their properties, including their value

¢ identifiers (names)
strings of letters and digits, identifying the objects

Zzl zzz zzz
z, & & 6
« objects ﬁ 26—&“15_!
signals, variables, constants, parameters I ——7—

e expressions
formulas including operators and arguments, determining
the way of calculation or specification of values

Lexical elements
Literals

AGH

Single literals (scalars)

character - single character between apostrophes, eg: ‘A’ or ‘a’
bit - represents the binary value ‘1’ or ‘0’
std_logic - represents the value of the signal by IEEE 1164:

‘u’ uninitialized

‘X! forcing an unknown
‘0’ forcing 0

‘1 forcing 1

AV A4 Hi-Z

‘W’ weak unknown

‘L' weak 0

‘H' weak 1

et don’t care

std_logic

‘u’ uninitialized

X’ forcing an unknown
‘0’ forcing 0

1 :

e om Bt
‘W’ weak unknown L{'J
‘L weak 0

‘H' weak 1

=7 don’t care

Vee
When Enable is High- Buffer is active.
Input Output Therefore logic level of output is the same
as that of input
When Enable is Low- Buffer goes into high
Enable impedance state (Disabled)

1k 16k 1300

Input A

Output Y

)) When Enable is Low- Buffer is active.
Iogut QU Therefore logic level of output is the same
o |on as that of input
GND 1 | Off When Enable is High- Buffer goes into

Enable high impedance state (Disabled)

iy s

AGH

boolean - represents two discrete values:
true TRUE True
false FALSE False
real - represents a floating-point value, eg: 1.3 or
-344 .0E+23, typically from -1.0E+38 to1.0E+38
with a precision of at least six digits after the decimal point
integer - represents an integer value, eg: +1, 862 or -257,
+123 456, 16#00FF#, typically from -2 ,147,483,647 to
+ 2,147,483,647
time - represent the only physical quantity defined, i.e. time:
62 fs, (ps, ns, us, ms, sec, min, hr)

Multiple literals (arrays, vectors)

string - string of characters, covered by quotes, eg: "x", "T hold"
bit _vector-"0001_1100",x"00FF"
std_logic_vector-"101Zz", "UUUUUU"

l s

AGH
Decimal literals: Based literals:
14 16#FE# -- 254
7755 2#1111 11104 -- 254
156E7 8#376# -- 254
188.993 16#D#E1 -- 208
88 _670_551.453 909 16#F.01#E+2 -- 3841.00
44 . 99E-22 2#10.1111 0001#E9 -- 1506.00
Physical literals:
60 sec
100 m
5 kohm
177 A b"11111110" - binary representation
B"1111 1110" - equivalent binary representation
x"FE" - equivalent hexadecimal representation
o"376" - equivalent octal representation

Lexical elements
m JJJ Identifiers, ranges
AGH

Basic identifiers

Must begin with a letter. Subsequently there may occure letters,
numbers or underscore (_). Underscore may not be the last character,
nor there may be two neighbouring underscores. VHDL is not the case
sensitive: XYZ <=> xyz. Identifiers may not be the same as keywords
(approximately 100).

Example: XYZ, X3,S(3),S(1 to 4),my_defs.

The range of variability of the type can be limited: I —
range {low val to high _val | high_val downto low val}
np: integer range 1 to 10;
real range 1.0 to 10.0;

Lexical elements
m JJJ Declarations, signal declarations

AGH

Most of the objects must be declared explicitly. Some objects (eg,
iteration identifiers in a loop, signals arising from other signals by the use
of attributes) are declared implicitly.

Declaration of objects (their names and types) include declarations of:
constants, variables, signals, or files.

Signal declarations

e scalar: signal name(s): type[rangel| : = expression] ;
e array: signal name(s): array_type [(index)|| : = expression] ;
e as a port (eg, scalar):
port (name(s): direction type [range]|: = expression];...) ;

Il s aarations

AGH

Variable declarations (within the process)

e scalar:
variable name(s): typel(range)]|: = expression] ;
e array:
variable name(s): array_type [(range)]| : = expression] ;

eg:
variable Index: integer range 1 to 50;
variable Adder Delay: time range 10ns to 50ns := 10ns;
variable MEMORY: bit vector (0 to 7);

variable x,y: integer;
* o

VHDL’93 introduced a shared variable 7
for communication between processes. W

[l s

Arguments of expressions must respond

. in terms of the types
Types coversions:

integer (3.0) => integer
real (3) => real
integer * time => time
nanos + picos => time
nanos / picos => integer

variable My Data, My Sample: integer;
My Data := integer(74.94 * real (My_Sample)) ;
Vector <= CONV_STD_LOGIC_VECTOR (Integer_ Variable) ;

10

) sreratsre

AGH

Operators in expressions:

logical and or nand
relational = /= <
concatenations&

arithmetic + - *

mod rem abs
shift ('93) sll srl sla

Required types of arguments:

the same : and or nand nor xor not
= /=< <=>>= + - *x /

integer :mod rem

integer exp : **

numerical : abs

nor xor not
= > =

/ * %

sra rol ror Xnor

mmJJJ Sequential statements

AGH

® process (concurrent!)
e sequential assignment

® wait

o if

® case

e null 0
® loop

® next

e exit

® assert

¢ subprograms

o

11

Sequential statements
lll JJJ process statement
AGH

* is a concurrent statement!

* defines a part of an architecture, where instructions are interpreted
sequentially

* containes only sequential statements

» must contain either a list of signals that activate (ie, sensitivity list)
or wait instruction

* provides the ability to 'programing-like' definition of behaviour

* has the ability to change the signals defined in architecture
and/or entity

wait for

the change
of input
° signal

.
Process Mm Process N

Sequential statements
lll JJJ process statement
assignment statement

Syntax:

[label :]
process | (sensitivity list) | set
[subprograms]
[types]
[constants]
[variables]
|other declarations]
begin

sequential statements
end process |[label];

Clear/Reset

Variable asignment statement
variable := expression ;

Signal asighment statement
signal <= expression|after delay|;

12

Sequential statements
m JJJ wait statement
AGH

Syntax: ‘
wait |[on sensitivity list]

[until condition]

[for time-expression]

Examples:

wait on a,b; -- process activation
wait until x > 10;

wait for 10 ns;

wait; -- waits forever

The following scripts are equivalent :

Qﬁ process process (a,b);
wait on a,b; <=> .
end process; end process;

[l S sremens™

Syntax:
if condition then sequential_statements ;

[elsif condition then sequential statements] ;
[else sequential_statements] ;
end if;

Example:
process (R, CLK)

begin
if R = '0" then
operand (7 downto 0) <= "00000000";

elsif CLK = 'l' and CLK'event then
operand (7 downto 0) <= DATAB;
end if;

end process;

Sequential statements
m JJJ case statement
AGH

Especially convenient to decode: the codes, the states of finite state
machine or the buses states.

Syntax:

case expression is
when val => sequential_statements ;
[when vall | val2 => sequential_statements ;|
[when val3 to vald => sequential statements ;|
[when others => sequential_statements ;|

end case;

Example: ' §

case BCD_int is
when 0 => LED <= "1111110";
when 1 => LED <= "0110000";

end case;

[llmJJJ Concurrent statements

AGH

¢ sighal assignment statements
e unconditional
e conditonal
» selected

e subprograms

e block

plirg

i

14

Concurrent statments
ul JJJ Unconditional signal assignment
AGH

In both examples below, the result of the assignment is the same:

architecture sequential of MULTIPLEXER is

begin
process (A, INDEX)
begin
OUTPUT <= A (INDEX); -- sequential

end process;
end sequential;

architecture concurrent of MULTIPLEXER is
begin

OUTPUT <= A (INDEX); -- concurrent
end concurrent;

Concurrent statments
ul JJJ Conditional signal assignment

AGH

Syntax:

signal <= {expression when condition else} expression;

Example:

DATA <= ROM when ADR < x"2000" else
RAM when ADR < x"6000" else
"ZZZZZZZZ" ;

Analogous to the sequential if statement, but:
* execute without taking the order into account,
* used in dataflow i structural description styles,
« are synthesizes to the combinational logic.

Note! Can not be used inside the process.

15

Concurrent statments
m JJJ Selected signal assignment

AGH

Syntax:

with expression select
signal <= {expression when choices,}; A

Example: "

with digit select

out <= 'l' when 0 | 9,
'0'" when 1 to 8,
'Z' when others;

Analogous to the sequential case statement.

Note! Can not be used inside the process.

mmJJJ Advanced data types

* Predefined types
+ Extended Types

— Enumerated Types
— Subtypes
+ Composite Types
— Arrays
— one-dimensional (vectors)
— multidimensional
— Records
» Other Predefined Types
— Files
— Lines

16

lllm J vt

AGH

® Consist of elements of the same type.

e Used to describe the buses, registers and other sets of hardware
components.

® Array elements can be scalars or other composite objects.
(It is not possible to create eg arrays of files!)

e Access to the specific elements through the use . ‘ ‘ ‘

of pointers. N)

The only predefined array types are: fw
* bit _vector (package STANDARD)

* string (package STANDARD)
* std_logic_vector (package STD_LOGIC_1164)

If needed, the user has to declare the new types of arrays for the
real and integer elements himself.

Advanced data types — Arrays
m JJJ Vectors - index range declaration
AGH

The way of access depends on the way of declaration.

Examples:

variable c: bit_vector (0 to 3);

variable d: bit_vector (3 downto 0); ._
c := “10107; [3
d :=c;

c(0) c(1) c(2) c(3)

1 0 1 0

d(3) d(2) d(1) d(0)

b(4 to 7) any range
c(4) index out of range
c(1.0) wrong type of index

Advanced data types — Arrays
m JJJ Vectors — assignments

AGH
Example: forthebit_vector type:
c := “10107; constant of the bit_vector type
c := x“A"; as above, note the length!
c:=S&T&MG&W; 4 concatenated 1-bit signals
c := (‘17,'0",'1",%0"); 4-bit aggregate
c := 10; forbidden

Vector slices

Assignments may be executed between the slices (fragments) of vectors.

Examples:

variable a: bit_vector (3 downto 0);
variable c: bit_vector (8 downto 1);
c(6 downto 3) := a;

c (6 downto 3),notthec (3 to 6) - direction of the indexes must be
the same as in the declaration!

Advanced data types - Arrays
m JJJ Vectors — aggregates

AGH

Literal may contain a list of array elements in positional and / or named
association, creating the so-called aggregate.

Syntac:
[type_name’ | ([choice =>)] expressionl {,[others =>| expression2})

Examples:

variable a,b: bit := ‘1’;
variable x,y: bit vector (1 to 4);
-- positional association

x := bit _vector’ ('l’ ,a nand b, 'l’ ,a or b);
-- named association
y := (1 => ‘1,4 =>aor b,2 =>anand b,3 => '1");

=> read: “receives”

Advanced data types — Arrays
ul JJJ Vectors — aggregates
AGH

Using the named association, [choice =>] points to the one or many elements.

[choice =>] may include an expression (eg: (i mod 2) =>),
pointing to one element or contain the range (eg: 3 to 5 =>
or 7 downto 0 =>), pointing to the sequence of elements.
The positional association has to be used before the named one.

Example:
variable b: bit;

variable c: bit_vector (8 downto 1);
c := bit_vector’ ('1l’ ,b,5 downto 2 =>'1’ ,others =>'0");

Very convenient and frequently used:
Counter <= (others => ‘0’);
Data_Bus <= (others => ‘Z’);

To be continued...

19

