
1

Variables & signals
Simulation

Module: Electronics & Telecomunication, 5rd year

Programmable Logical Devices

1Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Agenda

Signals in VHDL
processes, declarations, delays, hazards

Simulation
Delta-Time cycle, sensitivity list,
resolution function, attributes

2Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

2

Signals in VHDL

Signal declarations in VHDL

• Signals may be declared in:

� packets – global signals
� declaration section in entity - signals global

for entity

- ports: in, out, inout, buffer
- other declarations

� declaration section in architecture - signals
local for architecture

• Signals are initialized with := operator

• Values are given to signals with <= operator

3Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Signals in VHDL

Signal declarations in VHDL

Signals global for entity:
entity BOARD_DESIGN is

port (DATA_IN: in bit;

DATA_OUT: out bit);

signal SYS_CLK: bit := ‘1’;

end BOARD_DESIGN;

Signals local for architecture:
architecture DATA_FLOW of BOARD_DESIGN is

signal INT_BUS: bit;

begin

..........

Global signals:
package SIGDEC is

signal RESET: bit := ‘1’;

signal INIT: bit := ‘0’;

end SIGDEC;

4Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

3

Signals in VHDL

Signal declarations in VHDL

Examples:

port (DATA_IN: in bit; DATA_OUT: out bit);

port (B, A: in MyLib.MyPkg.MyType);

Direction Usage

in The right side of the assignment to the variable or signal

out The left side of the assignment to the variable or signal

inout Both above

buffer As above, but only one driver (not used in practice)

5Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

A declaration of signal in the port statement of entity should specify:

The name of the signal, its direction, type and optionally the initial value

Syntax:

port (name [,more_names]; direction type [:=expression][;more ports]);

Signals in VHDL

Structural description

entity COMPARE is

port (A, B: in bit;

C: out bit);

end COMPARE;

architecture STRUCTURAL of COMPARE is

signal I: bit; -- internal signal – no direction!

component XR2 port (X, Y: in bit; Z: out bit);

end component;

component INV port (X: in bit; Z: out bit);

end component;

begin

U0: XR2 port map (A, B, I);

U1: INV port map (I, C);

end STRUCTURAL;

XR2 INV

U0 U1

I
C

A

B

X

Y

Z X Z

6Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

4

Signals in VHDL

Local Feedback

Question: What is the most likely direction of the signal Q?

Answer: buffer

Dff
D

C

Q

7Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Signals in VHDL

Buffer usage

8Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity with_buffer is

port(A : in unsigned(3 downto 0);

B : in unsigned(3 downto 0);

Clk : in std_logic;

C : buffer unsigned(3 downto 0));

end with_buffer;

architecture BEHAVIORAL of with_buffer is

begin

process(Clk)

begin

if (rising_edge(Clk)) then

C <= A + B + C;

end if;

end process;

end BEHAVIORAL;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity without_buffer is

port(A : in unsigned(3 downto 0);

B : in unsigned(3 downto 0);

Clk : in std_logic;

C : out unsigned(3 downto 0));

end without_buffer;

architecture BEHAVIORAL of without_buffer is

signal C_dummy : unsigned(3 downto 0);

begin

C <= C_dummy; --Assign the intermediate signal

process(Clk)

begin

if (rising_edge(Clk)) then

C_dummy <= A + B + C_dummy;

--Use the intermediate signal in actual

calculation.

end if;

end process;

end BEHAVIORAL;

5

Signals in VHDL

Local Feedback

entity ...

port(D: in ...

C: in ...

Q: buffer ...);

end entity;

architecture awkward

begin

process(C)

begin

if C =‘1’ and C’event then

Q <= Q xor D;

end if;

end process;

end awkward;

The rules of connections between the modules require corresponding
modes of ports, eg: buffer� buffer. But this is not convenient...

entity ...

port(D: in ...

C: in ...

Q: out ...); -- OUT direction

end entity;

architecture good

signal: T ... -- T aux signal

begin

process(C)

begin

if C =‘1’ and C’event then

T <= T xor D; -- T usage

end if;

end process;

Q <= T; -- concurrent assignment

end good;

� �

9Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Signals in VHDL

Communication between processes

architecture FIRST of ST_UNIT is

signal A_DONE: bit := ‘0’;

begin

.....

A: process

begin

.....

if S1 then A_DONE <= ‘1’;

B: process

begin

wait until A_DONE = ‘1’;

.....

A: process

B: process

signal

A_DONE

10Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

6

Signals in VHDL

Communication between processes

• Processes can communicate with each other
by giving the value to the signal(s).

• Process may suspend its operation and wait
for the change on its input signal.

• Variables declared in the process may not pass
their values to other processes.

• VHDL‘93 defines the global variables that may be
used for communication between processes.

11Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Signals in VHDL

Transport delay

Modeling of connections is made using the transport delay.
All the changes of the signal value are propagated, regardless
of their duration.

Syntax:

signal <= transport expression after transport-delay;

Example:
Y <= transport A after 10 ns;

A Y

time(ns) 15 30 45 60

Y

A

12Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

7

Signals in VHDL

Inertial delay

Modeling of elements is done using inertial delays (default).
Only these changes of the signal value, which last longer than
the delay, are propagated.

Syntax:

signal <= [inertial] expression after inertial-delay;

Example:
Y <= A after 10 ns;

A Y

time(ns) 15 30 45 60

Y

A

13Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Signals in VHDL

Inertial delay

VHDL-93 allows the modeling of elements that respond to pulses
shorter than the delay of these elements.

Syntax:

signal <= reject reject-delay inertial expression after inertial-delay;

Example:
Y <= reject 4 ns inertial A after 10 ns;

A Y

time(ns) 15 30 45 60

Y

A

14Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

8

Signals in VHDL

Modeling the delays in process

Assigning values to the signals is sequential inside the processes,
but concurrent outside of them.

Inside the processes, the signal assignments are stopped until the
simulation cycle is run. This is triggered by the execution of the wait

statement.

Example:

process

begin

sys_clk <= not (sys_clk) after 50 ns;

int_bus <= data_in after 10 ns;

data_out <= my_function (int_bus) after 10 ns;

wait

end process;

15Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Signals in VHDL

Modeling the delays with signals

signal X, Y: integer;
process

begin

wait on Y;

X <= Y + 1 after 10 ns;

In the above example, X takes the new value exactly after 10 ns,
not after 9.999 or 10.001 ns.

Specification of delays is ignored by synthesis tools.

signal X: integer;

process

begin

.....

X <= X + 1 after 10 ns;

.....

1 x

16Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

9

Signals in VHDL

Modeling the delays with signals

Assignment statements may contain values of the signals for several

various moments in time. This feature is useful for describing the clock
signals and other repetitive waveforms.

Example:
S <= ‘1’ after 4 ns, ‘0’ after 7 ns;

T <= 1 after 1 ns, 3 after 2 ns, 6 after 8 ns;

Inside the process, each signal should have only one source at a time.
Otherwise, only the last assignment is taken into account.

Example:
process
begin

xyz <= 1 after 5 ns; -- despite of the time...

xyz <= 2 after 4 ns; -- ...only this occures!...

pqr <= 10 after 5 ns; -- ...and of course this one.

wait

17Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Simulation

Simulation and wait statement

Rather than wait statement, the user can specify the list of signals

that activate a process (called a 'sensitivity list'). These signals are

listed in parentheses after the process keyword.

This is equivalent to the wait statement, occurring at the end of

the process. The process may contain either the list or such a wait
statement.

Przykład:
process (CLK) process

begin begin

.....

.....

<statements> <statements>

.....

..... wait on CLK;

end process; end process;

18Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

10

Signals in VHDL

Zero delay

Example:

entity VAR is

port (A: in bit_vector (0 to 7);

INDEX: in integer range 0 to 7;

OUTPUT: out bit);

end VAR;

architecture VHDL_1 of VAR is

begin

process

begin

OUTPUT <= A(INDEX); -- 0 ns delay

wait; -- wait initializes the assignment

.....

end VHDL_1;

19Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Signals in VHDL

Variables versus signals

Main differences between the assignments of value
to variables and signals

Signal assignments Variable assignments

• according to time regimes • no time regimes

• delays taken into account • no delays

• after fulfilling the condition in wait • immediate

20Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

11

Signals in VHDL

Examples:

X <= 1; -- 0 ns delay

wait; -- assignment occures after execution of wait

X <= Y; -- 0 ns delaty – signals swap

Y <= X;

wait; -- both assignment occure after wait execution

V := 1; -- variable assignment occures immediately

S <= V;

A := S; -- A receives the previous value of S

wait; -- S receives V value (=1) after wait executes

X <= 1;

X <= 2;

wait for 0 ns; -- after wait execution X recevies value =2

21Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Signals in VHDL
Why do they behave that way?

-- D Flip Flop with asynchronous Reset

-- CLK: in STD_LOGIC;

-- RESET: in STD_LOGIC;

-- DIN: in STD_LOGIC;

-- DOUT: out STD_LOGIC;

process (CLK, RESET)

begin

if RESET='1' then --asynchronous RESET active High

DOUT <= '0';

elsif (CLK'event and CLK='1') then --CLK rising edge

DOUT <= DIN;

end if;

end process;

22Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

12

Signals in VHDL

Variables versus signals

...

signal x,y,z : bit;

...

process (y)

begin

x <= y;

z <= not x;

-- wait on y;

end process ;

23Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

process (y)

variable x,z : bit;

begin

x := y;

z := not x;

end process;

Signals in VHDL

Hazards

entity MUX is
port (Ain, Bin: in bit;

SEL: in boolean;
Y: out bit);

end MUX;

architecture WRONG of MUX is
signal MUXVAL: integer range 0 to 1;

begin
process
begin
MUXVAL <= 0;
if (SEL) then
MUXVAL <= MUXVAL + 1;
end if;
case MUXVAL is
when 0 => Y <= Ain after 10 ns;
when 1 => Y <= Bin after 10 ns;
end case;
wait on Ain, Bin, SEL;
end process;
end WRONG;

24Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

13

Signals in VHDL

Hazards

entity MUX is
port (Ain, Bin: in bit;

SEL: in boolean;
Y: out bit);

end MUX;

architecture BETTER of MUX is
begin
process
variable MUXVAL: integer range 0 to 1; -- variable!

begin
MUXVAL := 0; -- variable!
if (SEL) then
MUXVAL := MUXVAL + 1; -- variable!
end if;
case MUXVAL is -- variable!
when 0 => Y <= Ain after 10 ns;
when 1 => Y <= Bin after 10 ns;
end case;
wait on Ain, Bin, SEL;
end process;
end BETTER;

25Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Simulation

Signals versus variables

Question:
How will above counters count ?

architecture sig of counter is

signal SIG: ...

begin

process(CLK)

begin

if CLK and CLK'event then

SIG <= SIG + 1;

if SIG = 9 then

SIG <= 0;

end if;

end if;

end process;

architecture var of counter is

begin

process(CLK)

variable VAR: ...

begin

if CLK and CLK'event then

VAR := VAR + 1;

if VAR = 9 then

VAR := 0;

end if;

end if;

end process;

Answer:
sig – from 0 to 9
var – from 0 to 8

Rule: Must the newly assigned value be used in the same run of simulation
loop? If so, then use the variable. In other cases – use the signal (slower
simulation of signals �).

26Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

14

Simulation

Simulation cycle

• Former simulators: One-List Algorithm (evaluation and assignment).
• VHDL simulators: Two-List Algorithm (evaluation / assignment).

Example (in process):
A <= B;

B <= A;

Simulation of events with zero delay time is performed during the fictional
time unit called delta-time. It is a complete cycle of a simulation, but
without advancing the time counter:

• simulator models the events with zero delay time, using the delta-time
cycle,

• events executed at the same time are simulated during the delta-time
in a given order,

• logic connected with them is then resimulated to propagate changes for
the next cycle,

• delta-time cycles are repeated until no changes are detected.

27Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Simulation

Simulation cycle

Enter Begin Middle End Leave

28Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

time

signals assignments
process execution,

expressions evaluation

15

Simulation

Simulation cycle

Simulation of concurrent assignments with ∆-cycles.

Example:
X <= A and B;

Y <= not X;

time(ns) 15 30 45 60

B

A

X

30ns+0∆ 50ns+0∆

Y

30ns+1∆ 50ns+1∆

A YX

B

29Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Simulation

Simulation cycle

Question: What are the values of X and A after one cycle

of the delta-time?

process

begin

X <= 1;

X <= 2;

A <= X;

X <= 3;

wait for 0 ns;

Answer: X has value of 3
A has a previous value of X

30Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

16

Simulation

wait statement

wait statement variants:

• wait on A, B;
Suspends the execution until the event on A or B occures.

• wait until A > 10;
Suspends the execution until the event on A occures and
the condition A > 10 is met.

• wait for 10 ns;

Suspends the execution for 10ns time.

• wait;
Suspends the execution forever. Used as ‘kill’.

31Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Simulation

Sensitivity list

Question:

What is the difference in the behavior of the two following processes?

Answer:

Left: 1 delta-cycle
Using previous values of S and T to calculate the value of V.

Right: 2 delta-cycles
Updating the value of S and T to calculate the value of V.

process (A, B)

begin

S <= A;

T <= B;

V <= S or T;

end process;

process (A, B, S, T)

begin

S <= A;

T <= B;

V <= S or T;

end process;

32Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

17

Simulation

Resolution function

VHDL allows to drive signals from many sources, but:

• all drivers must be placed in a separate processes or in different
concurrent assignments,

• for such signals there must be declared a resolution function,

• this function is pre-declared for the std_logic type. This is the preferred
type of objects (it's easier to use one type in the whole project), but
does not allow for detection (during compilation) of accidental
connections of two or more drivers. This is only possible during the
simulation.

33Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Simulation

Resolution function

architecture SEQUENTIAL of TRISTATE is

signal Ain,Bin,Asel,Bsel,Sout: STD_LOGIC;

begin

A:process (Ain,Asel)

begin

Sout <= ‘Z’;

if (Asel=‘1’) then

Sout <= Ain;

end if;

end process;

B:process (Bin,Bsel)

begin

Sout <= ‘Z’;

if (Bsel=‘1’) then

Sout <= Bin;

end if;

end process;

end SEQUENTIAL;

Asel

Bsel

Ain

Bin

Sout

architecture CONCURRENT of TRISTATE is

signal Ain,Bin,Asel,Bsel,Sout: STD_LOGIC;

begin

Sout <= Ain when Asel = ‘1’ else ‘Z’;

Sout <= Bin when Bsel = ‘1’ else ‘Z’;

end CONCURRENT;

34Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

18

Simulation

Resolution function – STD_LOGIC_1164

TYPE std_ulogic IS ('U','X','0','1','Z','W','L','H','-');

TYPE std_ulogic_vector IS ARRAY (NATURAL RANGE <>) OF std_ulogic;

FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic;

SUBTYPE std_logic IS resolved std_ulogic;

TYPE std_logic_vector IS ARRAY (NATURAL RANGE <>) OF std_logic;

TYPE stdlogic_table IS ARRAY (std_ulogic, std_ulogic) OF std_ulogic;

CONSTANT resolution_table : stdlogic_table := (

--

--| U X 0 1 Z W L H - | |

--

('U','U','U','U','U','U','U','U','U'), -- | U |

('U','X','X','X','X','X','X','X','X'), -- | X |

('U','X','0','X','0','0','0','0','X'), -- | 0 |

('U','X','X','1','1','1','1','1','X'), -- | 1 |

('U','X','0','1','Z','W','L','H','X'), -- | Z |

('U','X','0','1','W','W','W','W','X'), -- | W |

('U','X','0','1','L','W','L','W','X'), -- | L |

('U','X','0','1','H','W','W','H','X'), -- | H |

('U','X','X','X','X','X','X','X','X')); -- | - |

35Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Simulation

Resolution function – STD_LOGIC_1164

FUNCTION resolved (s: std_ulogic_vector) RETURN std_ulogic IS

VARIABLE result : std_ulogic := 'Z'; -- weakest state default

BEGIN

-- The test for a single driver is essential otherwise the

-- loop would return 'X' for a single driver of '-' and that

-- would conflict with the value of a single driver unresolved

-- signal.

IF (s'LENGTH = 1) THEN RETURN s(s'LOW);

ELSE

FOR i IN s'RANGE LOOP

result := resolution_table(result, s(i));

END LOOP;

END IF;

RETURN result;

END resolved;

36Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

19

Simulation

Resolution function

Function:

• returns one value,

• has all the arguments in input mode,

• passes the arguments by their values.

Resolution function:

• is required when the signal (node) is controlled by
more than one driver,

• performs the arbitration of signals,

• is invoked in case of change in any of the signal
drivers,

• receives an array of signals for arbitration,

• is a user-defined function,

• is associated with a subtype.

37Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Signals in VHDL

Timing attributes of signals

• signal_name‘event - returns TRUE if an event has occurred

on signal in the current simulation cycle

• signal_name‘last_event - returns the amount of time since last event

occurred on signal

• signal_name‘last_value - returns the previous value of signal before

last event occurred on it

Examples:

if CLK’event and CLK=‘1’ then ...

if SD_DAT'event and (SD_DAT=‘H’ or SD_DAT=‘Z’) and

SD_DAT'last_value=‘1’ then ...

Defined in libraries functions rising_edge and falling_edge:

if rising_edge(CLK) then ...

are equivalent to statements like:

if CLK’event and CLK=‘1’ and CLK’last_value=‘0’ then ...

38Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

20

Signals in VHDL

Timing attributes of signals

time(ns) 15 30 45 60

S

S’event

S’last_value

15 20 25 0 5 10 0 5 10 15 20
S’last_event

39Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Simulation

Predefined attributes

Predefined attributes allow to get information about objects, types,
subprograms, etc.

Signal attributes:

40Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

21

Simulation

Predefined attributes

Attributes of scalar types:

Attributes of discrete and physical types and subtypes:

Attributes of array types and array-type objects:

41Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

To be continued…

Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST 42

