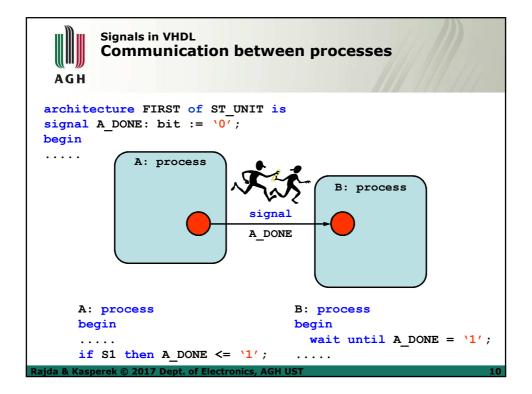
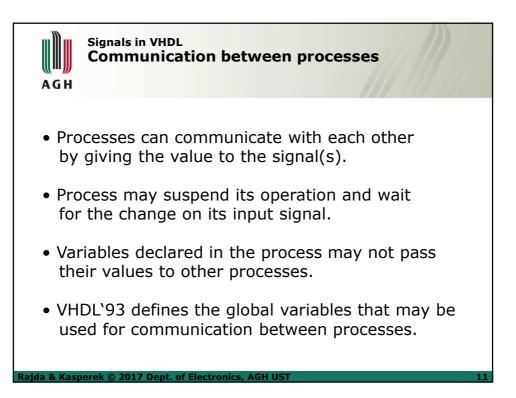
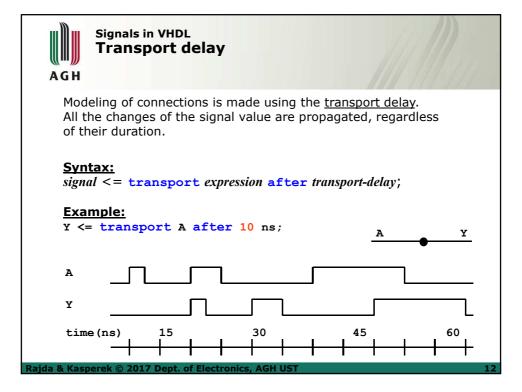
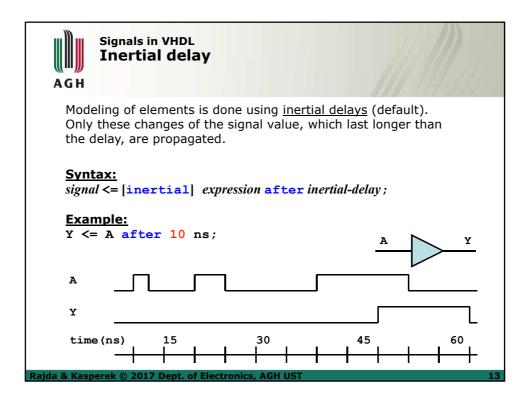
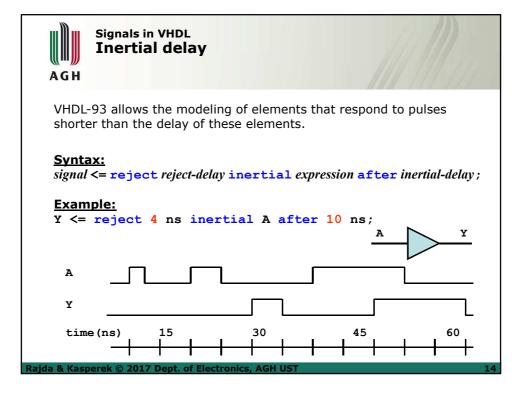

Signals in VHDL Signal declarations	in VHDL
<pre>Global signals: package SIGDEC is signal RESET: bit := '1'; signal INIT: bit := '0'; end SIGDEC;</pre>	<pre>Signals global for entity: entity BOARD_DESIGN is port (DATA_IN: in bit; DATA_OUT: out bit); signal SYS_CLK: bit := '1'; end BOARD_DESIGN;</pre>
Signals local for architecture: architecture DATA_FLOW of BOAR signal INT_BUS: bit; begin 	D_DESIGN is SignalAssignments_1 CODEC_1MHz < <clk_1mhz '0';<="" (codec_clk_en="1")="" else="" th="" when=""></clk_1mhz>
CLK_48MHz CLK_48MHz AVR_RESET U U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz U1 CLK_48MHz CLK_48MHz U1 CLK_48MHz CLK_48MHZ CLKA CLK_48MHZ CLKA CLK_48MHZ CLK_48MHZ	CODEC_IMPZ~CCLK_IMPZ_WIER(COLEC_CLFIF-Tylese 0; CAX_T2MHZ~CCLK_IMPMen(CIX_CLK_EN='1) else 0; CAX_T2MHZ~CCLK_IMPZ benching CODEC_IMPZ CCLK_24MHZ CLK_24 CLK_24 CLK_24 CLK_24

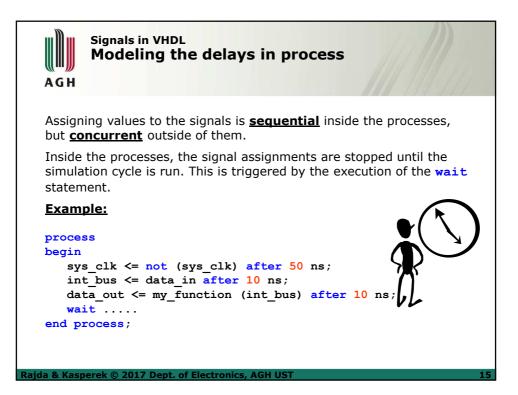


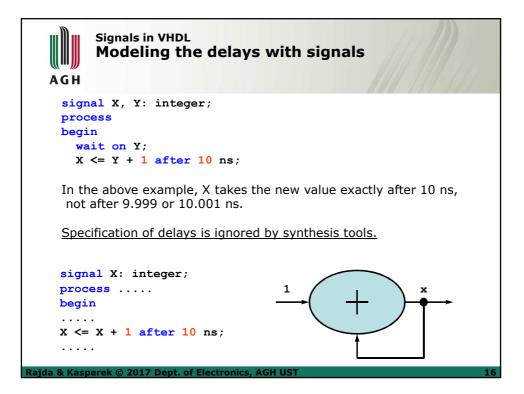


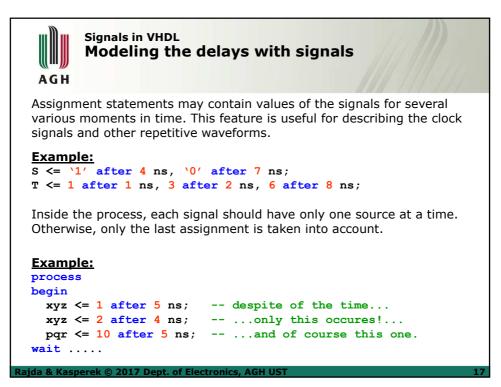


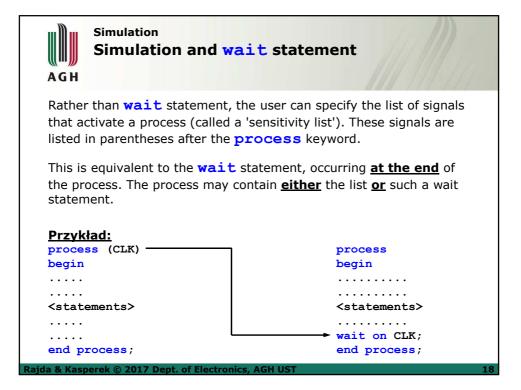


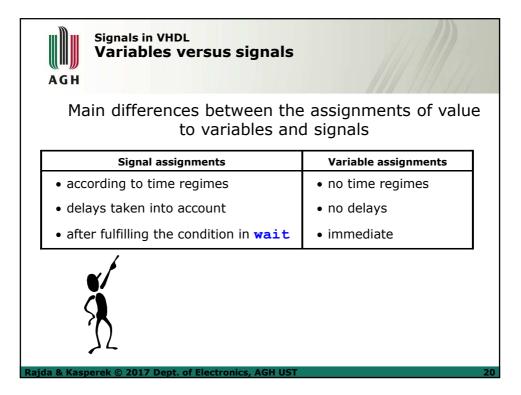


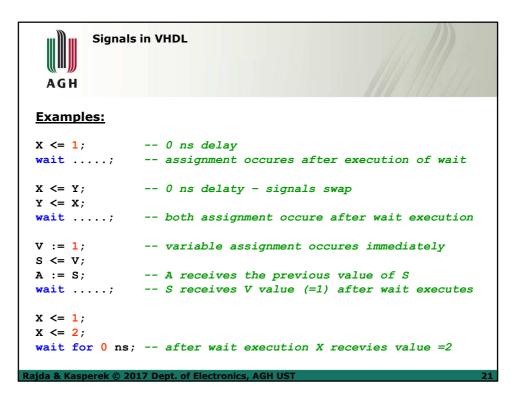


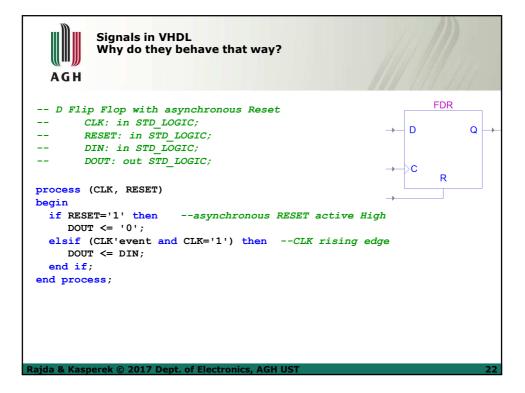


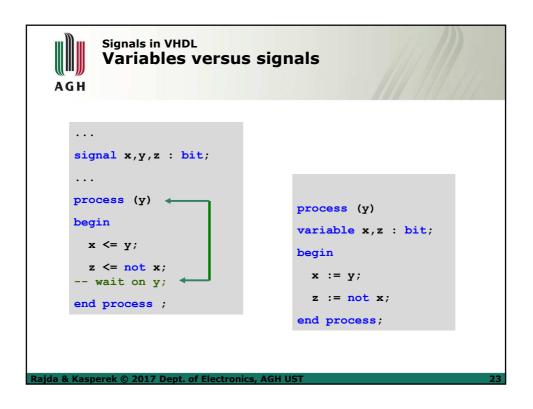


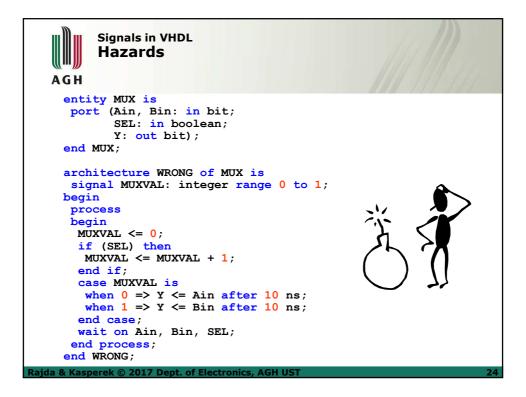


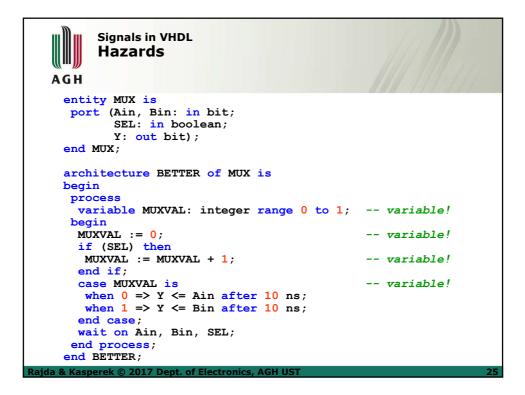


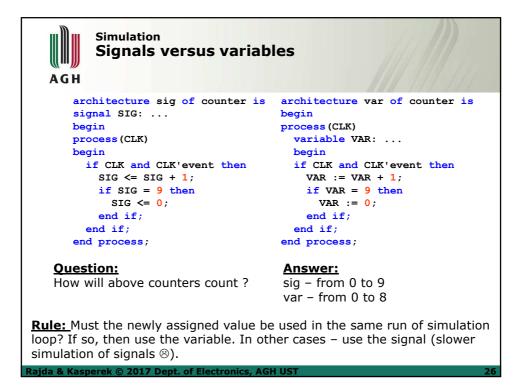


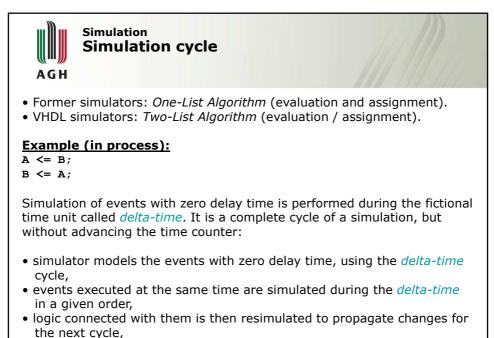


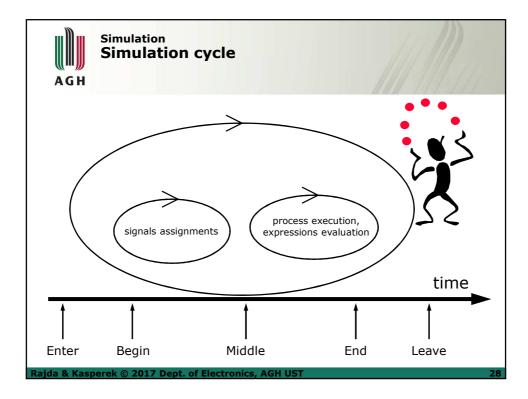


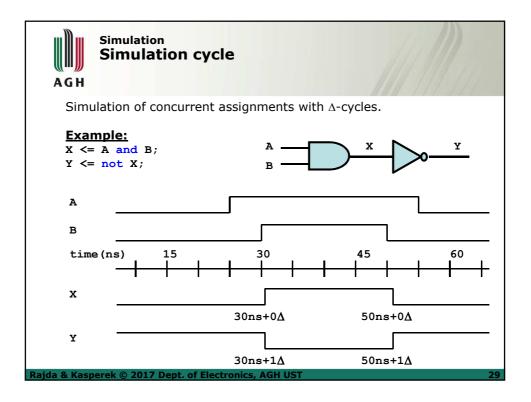

```
Signals in VHDL
        Zero delay
 AGH
    Example:
    entity VAR is
    port (A: in bit_vector (0 to 7);
          INDEX: in integer range 0 to 7;
          OUTPUT: out bit);
    end VAR;
    architecture VHDL 1 of VAR is
    begin
      process
      begin
        OUTPUT <= A(INDEX); -- 0 ns delay
                            -- wait initializes the assignment
        wait ....;
    . . . . .
    end VHDL 1;
ajda & Kasperek © 2017 Dept. of Electronics, AGH U
```

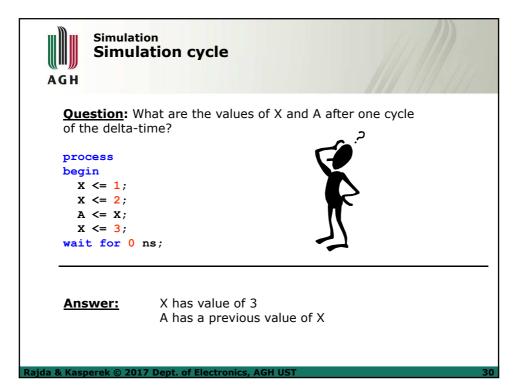


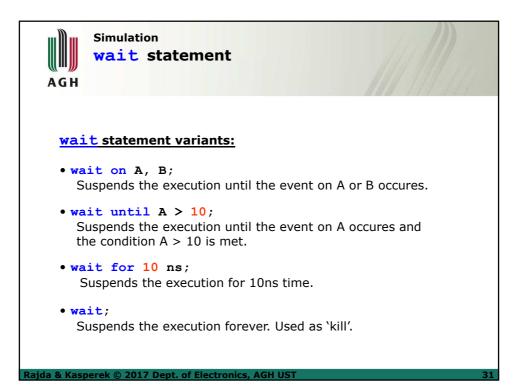


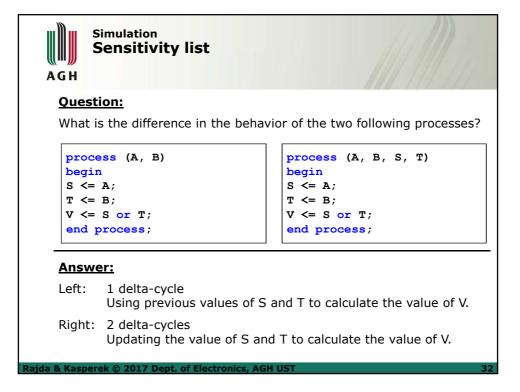


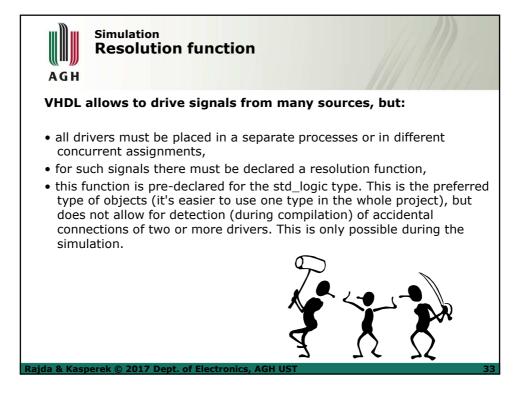


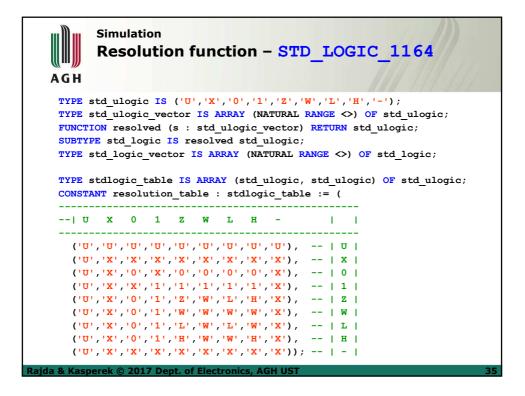




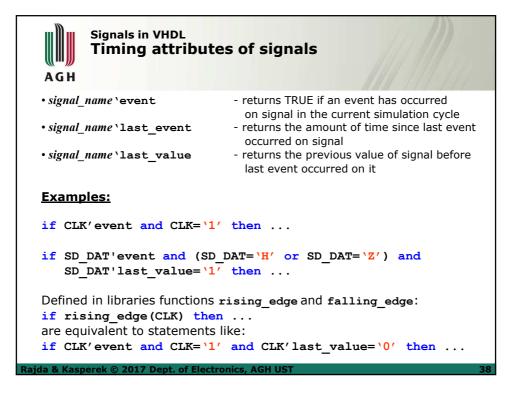

• delta-time cycles are repeated until no changes are detected.


ijda & Kasperek © 2017 Dept. of Electronics, AGH UST





Simulation Resolution fu	nction
architecture SEQUENTIAL o signal Ain,Bin,Asel,Bse begin	
<pre>A:process (Ain,Asel) begin Sout <= 'Z'; if (Asel='1') then Sout <= Ain; end if; end process;</pre>	Asel Ain Bsel Bin
<pre>B:process (Bin,Bsel) begin Sout <= 'Z'; if (Bsel='1') then Sout <= Bin; end if; end process; end SEQUENTIAL; Rajda & Kasperek © 2017 Dept. of El</pre>	<pre>architecture CONCURRENT of TRISTATE is signal Ain,Bin,Asel,Bsel,Sout: STD_LOGIC; begin Sout <= Ain when Asel = `1' else `Z'; Sout <= Bin when Bsel = `1' else `Z'; end CONCURRENT;</pre>


Simulation **Resolution function – STD LOGIC 1164** AGH FUNCTION resolved (s: std_ulogic_vector) RETURN std_ulogic IS VARIABLE result : std ulogic := 'Z'; -- weakest state default BEGIN -- The test for a single driver is essential otherwise the -- loop would return 'X' for a single driver of '-' and that -- would conflict with the value of a single driver unresolved -- signal. IF (s'LENGTH = 1) THEN RETURN s(s'LOW); ELSE FOR i IN S'RANGE LOOP result := resolution_table(result, s(i)); END LOOP; END IF: **RETURN** result; END resolved;


Simulation Resolution function Function: returns one value, has all the arguments in input mode, passes the arguments by their values. Resolution function: is required when the signal (node) is controlled by more than one driver, performs the arbitration of signals, is invoked in case of change in any of the signal drivers, receives an array of signals for arbitration,

• is a user-defined function,

ek © 2017 Dept. of Electronics, AGH U

is associated with a subtype.

GH Pre	edefined attributes	
Predefined subprogra	attributes allow to get information about objects, types, ms, etc.	
Signal attribute	25:	
Attribute	Result	
S'Delayed(t)	implicit signal, equivalent to signal S, but delayed t units of time	
S'Stable(t)	implicit signal that has the value True when no event has occurred on S for t time units, False otherwise	
SQuiet(t) implicit signal that has the value True when no transaction has occurred on S for t time units, False otherwise		
S'Transaction	implicit signal of type Bit whose value is changed in each simulation cycle in which a transaction occurs on S (signal S becomes active)	
S'Event	True if an event has occurred on S in the current simulation cycle, False otherwise	
S'Active	True if a transaction has occurred on S in the current simulation cycle, False otherwise	
SLast_event the amount of time since last event occurred on S, if no event has yet occurred it returns TimeHigh		
S'Last_active	Last_active the amount of time since last transaction occurred on S, if no event has yet occurred it returns TimeHigh	
S'Last_value	the previous value of S before last event occurred on it	
SDriving True if the process is driving S or every element of a composite S, or False if the current value of the driver for S or any element of S in the process is determined by the null transaction		
S'Driving_value	the current value of the driver for S in the process containing the assignment statement to S	

	nulation edefii	ned attril	butes	
Attributes of	scalar type	s:		
Attribute		lt type		Result
TLeft	same	as T		leftmost value of T
TRight	same	as T		rightmost value of T
TLow	same	as T		least value in T
THigh	same	as T		greatest value in T
TAscending	boolea	n		true if T is an ascending range, false otherwise
Timage(x)	string			a textual representation of the value \times of type T
T'Value(s)	base t	ype of T		value in T represented by the string s
Attribute TPos(s) TVal(x)	Result type	nteger of T	Result position number of s in T value at position x in T (x is integer)	
TSucc(s)	base type		value at position one greater than s in T	
TPred(s) TLeftof(s)	base type		value at position one less than s in T value at position one to the left of s in T	
TRightof(s)	base type		value at position one to the right of s in T	
		and array-type o		
Attribute Result				
		leftmost value in index range		
A'Left(n)	rightmost value in index range		ge of dimension n	
A'Right(n)			of dimension n	
A'Right(n) A'Low(n)		lower bound of index range		
A'Right(n)		upper bound of index range	of dimension n	
A'Right(n) A'Low(n) A'High(n) A'Range(n)		upper bound of index range index range of dimension n		
A'Right(n) A'Low(n) A'High(n) A'Range(n) A'Reverse_range(n)		upper bound of index range index range of dimension n reversed index range of dim	ension n	
A'Right(n) A'Low(n) A'High(n) A'Range(n)		upper bound of index range index range of dimension n reversed index range of dim number of values in the n-th	ension n	

