

AG H	Synthesis of the basic eleme Arithmetic and logica	nts Il operators
arcl	hitecture behavioral of	AND_gate is
beg: p: be	in rocess (A, B) egin	synthesized AND gate
	if $A = \frac{1}{4}$ and $B = \frac{1}{4}$	then
	$X \leq 1';$	
	x <= `0';	
	end if;	
end	behavioral;	
arcl	hitecture inferred of A	ND gate is
beg	in	inferred AND gate
x	$\leq A$ and B;	from the library of
end	<pre>inferred;</pre>	presynthesized elements
Daida & Kace	<u>Inferred</u> and or xor r <u>operators :</u> + - * / = /=	not nor nand xnor $z > z < z = \dots$

Raida & Kasperek © 2017 Dept. of Electronic


```
Synthesis of complex circuits
      Concurrent selection statements : when / with
AGH
entity control stmts is
  port (a, b, c: in boolean; m: out boolean);
end control_stmts;
architecture example of control stmts is
begin
  m <= b when a else c;</pre>
end example;
entity control stmts is
  port (sel: bit_vector (0 to 1); a,b,c,d: bit; m: out bit);
end control stmts;
architecture example of control stmts is
begin
  with sel select
       m \leq c when b"00",
       m \leq d when b"01",
       m \le a when b"10",
       m <= b when others;</pre>
end example;
           201
                        ctronics, AGH US<sup>*</sup>
```


Memories	complex circuits	
 inferred or insta implemented as (depending on the si synchronous (op RAM (also initial also used for co 	ntiated a distributed or block mem ze, speed and occupied area) otionally with asynchronous ized) or ROM mbinatorial logic and FSMs	ories read – distributed)
Method	Advantages	Disadvantages
Inference	 Most generic way to incorporate RAMs into the design, allowing easy/automatic design migration from one FPGA family to another FAST simulation 	 Requires specific coding styles Not all RAMs modes are support Gives you the least control over implementation
Inference CORE Generator software	Most generic way to incorporate RAMs into the design, allowing easy/automatic design migration from one FPGA family to another FAST simulation Gives more control over the RAM creation	Requires specific coding styles Not all RAMs modes are support Gives you the least control over implementation May complicate design migration from one FPGA family to anothe Slower simulation comparing to Inference


```
Synthesis of types
integer type
type short is integer 0 to 255;
subtype shorter is short range 0 to 31;
subtype shortest is short range 0 to 15;
signal op1, op2, res1: shortest;
signal res2: shorter;
signal res3: short;
begin
  res1 <= op1 + op2; -- truncate carry
  res2 <= op1 + op2; -- use carry
  res3 <= op1 + op2; -- use carry and zero extend</pre>
```


- Flip-flops generate inputs to combinational logic, which computes inputs to flip-flops
- Exactly one value per signal per clock cycle
- Edge-triggered flip-flops only. Do not use level-sensitive logic.
- Output registers for signals

 Synthesis ready coding

 AGH

 Image: Constraint of the stand of t

