
1

Logic synthesis

Module: Electronics & Telecomunication, 5rd year

Programmable Logical Devices

1Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Agenda

• Introduction to the synthesis

• Hardware representation
of VHDL objects

• Synthesis of the basic elements

• Synthesis of complex circuits

• Synthesis of types

• Non-synthesizable structures

• Synthesis rules & guides

2Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

2

Logic Syntesis

Literature

• „A VHDL Synthesis primer” J.Bhasker,

• „VHDL A Logic Synthesis Approach” D.Naylor, S.Jones,

• „VHDL Coding and Logic Synthesis with SYNOPSIS”

W.F.Lee,

• „Reuse Methodology Manual” M.Keating, P.Bricaud,

• „Synthesis and Simulation Design Guide” (Xilinx manual)

• „Xilinx Synthesis Technology (XST) User Guide”

(Xilinx manual)

• „Digital System Design with VHDL” M.Zwoliński

(translated: „Projektowanie układów cyfrowych

z wykorzystaniem języka VHDL”)

• Internet resources

3Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis & implementation

Xilinx CPLD/FPGA Design

4Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

3

Synthesis & implementation

Design in Active-HDL environment

5Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis & implementation

Design in Active-HDL environment: Design Flow

External tools
for synthesis
and implementation

Graphical shell
by selecting option:

Tools/Preferences/
Environment/Flows/
Integrated Tools

and

View/Flow

6Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

4

Logic synthesis

Digital design objects

7Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Combinatorial
Circuitry

Registered
Circuitry (memory)

edge triggered
Registered
Circuitry

(memory)
level triggered

Logic synthesis

Hardware representation of VHDL objects

An object - signal or variable - may be
represented as:

• flip-flop
(edge-triggered memory element)

• latch
(level-triggered memory element)

• wire
(combinatorial element)

8Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

5

Logic synthesis

Hardware representation of VHDL objects

if C = ’1’ and

C’event
then

Q <= A;
end if;

signal Q:
flip-flop

if C = ’1’
then

Q <= A;
else

-- do nothing
end if;

signal Q:
latch

if C = ’1’
then

Q <= A;
else

Q <= B;
end if;

signal Q:
multiplexer

9Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

(edge-triggered
memory element)

(level-triggered
memory element)

(combinatorial
element)

Synthesis of the basic elements

Arithmetic and logical operators

architecture behavioral of AND_gate is
begin

process (A, B) -- synthesized AND gate

begin
if A = ‘1’ and B = ‘1’ then

X <= ‘1’;
else

X <= ‘0’;
end if;

end behavioral;

architecture inferred of AND_gate is
begin -- inferred AND gate

X <= A and B; -- from the library of

end inferred; -- presynthesized elements

Inferred and or xor not nor nand xnor
operators : + - * / = /= > >= < <= ...

10Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

6

Synthesis of the basic elements

Tri-state buffer

architecture behavioral of TRI_STATE_buffer is
begin

process (A, OE)
begin

if OE = ‘1’ then
X <= A;

else
X <= ‘Z’;

end if;
end behavioral;

architecture inferred of TRI_STATE_buffer is
begin

X <= A when OE = ‘1’ else ‘Z’;
end inferred;

OE

XA

11Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis of the basic elements

Priority encoder

architecture concurrent of PRIORITY_encoder is
begin
code <= "0001" when sel(0) = ‘1’ else

"0010" when sel(1) = ‘1’ else
"0100" when sel(2) = ‘1’ else
"1000" when sel(3) = ‘1’ else
"0000";

end concurrent;

Note the logical functions implemented in LUTs!

32103
ssssc =

2102
sssc =

101
ssc =

00
sc =

s0

s1

s2

s0

s1

s3

s2

c0

c1

c3

c2

12Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

7

Synthesis of the basic elements

Priority encoder

architecture behavioral of PRIORITY_encoder is
begin

process (A, B, C)
begin

if A = ‘1’ then -- A: signal coming with

X <= ‘1’; -- large delay

elsif B = ‘1’ then
X <= ‘0’;

elsif C = ‘1’ then
X <= ‘1’;

else
X <= ‘0’;

end if;
end behavioral;

A

B
X

C

�

Note the logical functions implemented in LUTs!

13Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Hardware representation of objects

Synthesis of D-type flip-flop

Process containing sensitivity list:
process (CLK)
begin --rising edge

if CLK = ‘1’ and CLK’event then
Q <= A and B;

end if;
end process;

Process containing wait statement
process
begin --falling edge

wait until not CLK = ‘1’ and CLK’event;
Q <= A and B;

end process;
Do not combine edge detection with other conditions:
if CLK’event and CLK = ‘1’ and CE = ‘1’ then ...

Concurrent conditional assignment (not recommended):
Q <= A and B when CLK’event and CLK = ‘1’;

14Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

8

Hardware representation of objects

Flip-flop with Clock Enable input

GATECLK <= IN1 and IN2 and CLK;
process (GATECLK)
begin

if GATECLK’event and GATECLK = ‘1’ then
if LOAD = ‘1’ then

OUT1 <= DATA;
end if;

end if;
end process;

�
15Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Hardware representation of objects

Flip-flop with Clock Enable input

ENABLE <= IN1 and IN2 and LOAD;
process (CLK)
begin

if CLOCK’event and CLOCK = ‘1’ then
if ENABLE = ‘1’ then

OUT1 <= DATA;
end if;

end if;
end process;

D

CE

C

QD
0
1

�
16Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

9

Hardware representation of objects

Synthesis of Set / Reset inputs

process(CLK)
begin

if CLK and CLK'event then
if SET = ‘1’ then -- synchronous SET

Q <= ‘1’;
else

Q <= A and B;
end if;

end if;
end process;

process(CLK, RESET) -- RESET in sensitivity list!
begin

if RESET = ‘1’ then -- asynchronous RESET
Q <= ‘0’;

elsif CLK and CLK'event then
Q <= A and B;

end if;
end process;

17Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Hardware representation of objects

Synthesis of D-type latch

Process containing sensitivity list :
process (CLK, A, B) -- list of all signals...

begin -- ...used in the process
if CLK = ‘1’ then -- active high

Q <= A and B;
end if;

end process;

Concurrent conditional assignment (not recommended):
Y <= A and B when CLK = ‘1’;

18Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

10

Hardware representation of objects

Unintentional synthesis of latch

process (A, B, C, SEL)
begin

if SEL = ”00” then
Y <= A;

elsif SEL = ”01” then
Y <= B;

elsif SEL = ”10” then
Y <= C;

end if;
end process;

process (A, B, C, SEL)
begin

if SEL = ”00” then
Y <= A;

elsif SEL = ”01” then
Y <= B;

elsif SEL = ”10” then
Y <= C;

elsif SEL = ”11” then
Y <= ‘0’;

end if;
end process;

Solution:
specifying all the possibilities
(also in the case statement - here

you can use the default specification
clause when others).

Problem:
synthesis of latch as a result of
incomplete specification of
options (for SEL = ”11”
combination, the last value will
be hold by default, which will
imply a memory element).

19Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Hardware representation of objects

Signals and variables

signal A,B,C,D: bit
...
NO_MEMORY: process (A,B,C)
variable TMP: bit;

begin
TMP:= A and B;
D <= TMP or C;

end process;

signal A,B,C: bit
...
IS_IT_LATCH: process (A,B,C)
variable TMP: bit;

begin
C <= TMP and B;
TMP := A or C;

end process;

A

B D

C

TMP

Synthesis of TMP : wire

Synthesis of TMP : latch ?!

20Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

11

Hardware representation of objects

Signals and variables

signal Qaux: ...
FFx2: process (clk)
begin

…
Qaux <= D;
Q <= Qaux;

end process;

FFx1: process (clk)
variable Qaux: ...

begin
…
Qaux := D;
Q <= Qaux;

end process; Syntesis : 1 flip-flop

D

clk

Qaux
Q

Synthesis : 2 flip-flops

D

clk

Qaux
Q

21Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis of complex circuits

Logical operators

entity logical_ops is
port (a, b, c, d: in bit; m: out bit);

end logical_ops;

architecture example of logical_ops is
signal e: bit;

begin
m <= (a and b) or e;
e <= c xor d;

end example;

entity logical_bit is
port (a, b: in bit_vector (0 to 3);

m: out bit_vector (0 to 3));
end logical_bit

architecture example of logical_bit is
begin

m <= a and b;
end example;

22Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

12

Synthesis of complex circuits

Relational operators

entity relational_equ is
port (a, b: in bit_vector (0 to 3);

m: out boolean);
end relational_equ;

architecture example of relational_equ is
begin
m <= a = b;

end example;

entity relational_mag is
port (a, b: in integer range 0 to 15;

m: out boolean);
end relational_mag;

architecture example of relational_mag is
begin
m <= a >= b;

end example;

23Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis of complex circuits

Arithmetic operators

package example_arithmetic is

type small_int is range 0 to 7;

end example_arithmetic;

use work.example_arithmetic.all;

entity arith is

port (a, b: in small_int;

m: out small_int);

end arith;

architecture example of arith is

begin

m <= a + b;

end example;

Note the hard-macros of adders (and multipliers!)

24Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

13

Synthesis of complex circuits

Selection statements

Sequential selection statements
• conditional signal assignment: if...
• selected signal assignment: case...

Concurrent selection statements
• conditional signal assignment: when...
• selected signal assignment: with...

25Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis of complex circuits

Sequential selection statements: if

entity control_stmts is
port (a, b, c: in boolean; m: out
boolean);
end control_stmts;

architecture example of control_stmts
is
begin

process (a, b, c)
variable n: boolean;
begin
if a then

n := b;
else

n := c;
end if;
m <= n;

end process;
end example;

26Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

14

Synthesis of complex circuits

Sequential selection statements : case

entity control_stmts is
port (sel: bit_vector (0 to 1); a,b,c,d: bit;

m: out bit);
end control_stmts;

architecture example of control_stmts is
begin

process (sel,a,b,c,d)
begin
case sel is

when b"00" => m <= c;
when b"01" => m <= d;
when b"10" => m <= a;
when others => m <= b;

end case;
end process;
end example;

27Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis of complex circuits

Concurrent selection statements : when / with

entity control_stmts is
port (a, b, c: in boolean; m: out boolean);

end control_stmts;
architecture example of control_stmts is
begin

m <= b when a else c;
end example;

entity control_stmts is
port (sel: bit_vector (0 to 1); a,b,c,d: bit; m: out bit);

end control_stmts;
architecture example of control_stmts is
begin

with sel select
m <= c when b"00",
m <= d when b"01",
m <= a when b"10",
m <= b when others;

end example;

28Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

15

Synthesis of complex circuits

Logic replication – loop

entity loop_stmt is

port (a: bit_vector (0 to 3);

m: out bit_vector (0 to 3));

end loop_stmt;

architecture example of loop_stmt is

begin

process (a)

variable b: bit;

begin

b := '1';

for i in 0 to 3 loop

b := a(3-i) and b;

m(i) <= b;

end loop;

end process;

end example;

29Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis of complex circuits

Logic replication - subprogram

entity subprograms is
port (a: bit_vector (0 to 2);

m: out bit_vector (0 to 2));
end subprograms;

architecture example of subprograms is

function simple (w, x, y: bit) return bit is
begin

return (w and x) or y;
end;

begin
process (a)
begin

m(0) <= simple(a(0), a(1), a(2));
m(1) <= simple(a(2), a(0), a(1));
m(2) <= simple(a(1), a(2), a(0));

end process;
end example;

30Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

16

Synthesis of complex circuits

Shifters

Sequential (shift register):
• with concatenation operator (&)

shreg <= shreg (6 downto 0) & SI;
• with loop statemnet for...loop

for i in 0 to 6 loop
shreg(i+1) <= shreg(i);

end loop;
shreg(0) <= SI;

• with shift operators (sll, srl, ...)

Combinatorial (barrel shifter):
• with shift operators (sll, srl, ...)

with SEL select
SO <= DI when "00",

DI sll 1 when "01",
DI sll 2 when "10",
DI sll 3 when others;

• with concatenation operator (&)

31Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis of complex circuits

Memories

• inferred or instantiated
• implemented as a distributed or block memories

(depending on the size, speed and occupied area)

• synchronous (optionally with asynchronous read – distributed)
• RAM (also initialized) or ROM
• also used for combinatorial logic and FSMs

32Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

17

Synthesis of types

integer type

• Types and subtypes, which may represent negative values
in range, are encoded in the Two's Complement code.

• Types and subtypes, which represent only positive values
in range, are encoded in the Natural Binary Code.

• The number of bits used depends on the largest allowable
value for the object.

-- binary encoding having 7 bits

type int0 is range 0 to 100;

type int1 is range 10 to 100;

-- 2's complement encoding having 8 bits (including sign)

type int2 is range -1 to 100;

-- binary encoding having 3 bits

subtype int3 is int2 range 0 to 7;

33Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis of types

integer type

type short is integer 0 to 255;

subtype shorter is short range 0 to 31;

subtype shortest is short range 0 to 15;

signal op1, op2, res1: shortest;

signal res2: shorter;

signal res3: short;

begin

res1 <= op1 + op2; -- truncate carry

res2 <= op1 + op2; -- use carry

res3 <= op1 + op2; -- use carry and zero extend

34Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

18

Synthesis of types

Enumerated types

Declaration: … is synthesized as:

type direction is (left, right, up, down); -- two wires

type cpu_op is (execute, load, store); -- two wires

-- the encoding of 11 is a "don't care"

subtype mem_op is cpu_op range load to store; -- two wires

-- the encodings of 00 and 11 are "don't cares"

-- User Defined Encoding

attribute enum_encoding: string;

attribute enum_encoding of cpu_op: type is

"001" & -- execute

"010" & -- load

"100"; -- store

35Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis of types

Enumerated and other types

• During synthesis the enumerated types are coded
binary by default. Subsequent elements (L) of the
enumerated type receive subsequent values, the first
from the left receives value zero.

• Number of bits (N) of an object that represents the
enumerated type will be the smallest possible number,
satisfying the condition: L <= 2

N

• bit & boolean types are synthesized as scalar

• character type is synthesized as 8-bit vector

36Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

19

Synthesis of types

std_logic_1164 type

Recommended, because:

• large number of values (‘U’,’1’,’0’,’Z’,’H’,’L’,’W’,’-’,’X’),

describing most of the real states in digital systems,

• is automatically initialized to the value of 'U' – this forces
a designer to initialize objects explicitly.
Do not overcome this feature by initialization of signals
and variables in their declaration - circuit that cannot be
initialized may be obtained after synthesis in the result
of such an approach.

• easy integration with other modules - eg. integer type

can be synthesized, but the simulation will require
executing time-consuming conversion functions.

• after synthesis and implementation there is only

std_logic type

37Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis of FSMs

FSM states encoding algorithms

• Auto
selects the needed optimization algorithms during the synthesis process

• One-Hot
ensures that an individual state register is dedicated to one state. Only one flip-flop
is active (hot) at any time. Very appropriate with most FPGAs where a large number
of flip-flops are available. Also a good alternative to optimize speed or to reduce power.

• Compact
minimizes the number of state variables and flip-flops. Appropriate when optimizing area.

• Sequential
consists of identifying long paths and applying successive radix two codes
to the states on these paths. Next state equations are minimized

• Gray
guarantees that only one state variable switches between two consecutive states.
Appropriate for controllers exhibiting long paths without branching

• Johnson
much like Gray option. Shows benefits with FSM containing long paths with no branching.

• User
causes the synthesis tool to use the encoding defined in the source file

• Speed1
oriented for speed optimization. The number of bits for a state register depends on the
particular FSM, but generally it is greater than the number of FSM states.

38Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

20

Synthesis

XST Synthesis Options

39Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Synthesis

Non-synthesizable structures

• timing clauses:

- assignments (after, transport, inertial)

- wait for

• floating-point data types (real)

• file operations – reduced:

- read: memory initialization from file

- write: debug

40Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

21

Synthesis ready coding

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 41

1. Only one attribute signal‘event in the process (clk!)

2. Drive every signal from exactly one process or use the concurrent

assignment.

3. Use std_logic (and std_logic_vector) types.

4. Do not test signal/variables for ‘X’ or ‘Z’.

5. Use asynchronous reset when there is one global signal from outside – do not

generate your own asynchronous reset – use the synchronous one.

6. Highly recommended fully synchronous design

• One global clock. Do not generate clock signals. Use multiplexers to

create “load enable” signals on flip-flops. Avoid clock gating.

• Flip-flops generate inputs to combinational logic,which computes

inputs to flip-flops

• Exactly one value per signal per clock cycle

• Edge-triggered flip-flops only. Do not use level-sensitive logic.

• Output registers for signals

Synchronous project:
• one global CLK
• all flips flops active on the same clock egde

Problems with two clock egdes :
• duty cycle vulnerability
• JTAG 1149 testing

CLK

Rajda & Kasperek © 2017 Katedra Elektroniki AGH

Synthesis ready coding

22

Asynchronous clock – problems !
(worse timing, testing troubles, phase vulnerability)

Solution – CE input –
if ce=‘1’ after (new line!) if clk’event and clk=‘1’.

CLK

Rajda & Kasperek © 2017 Katedra Elektroniki AGH

Synthesis ready coding

CLK

Do not use internally generated clocks

Synchronous design with CE (and/or DLL modules).

CLK

CE

Rajda & Kasperek © 2017 Katedra Elektroniki AGH

Synthesis ready coding

23

CA B

A+B+C

A+B+C

Rajda & Kasperek © 2017 Katedra Elektroniki AGH

Synthesis ready coding

Synthesis guides – there are many of them...
AHDL language assistant

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 46

24

To be continued…

Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST 47

