Module: Electronics & Telecomunication, 5rd year
m JJJ Hardware Acceleration

of Telecommunication Protocols

HDL projects
verification

| —

AGH

» Verification definition

» Types of verification

* HDL Testbench template

« AHDL TB & ALINT CODE COVERAGE
« Simulation, emulation, prototyping

« Simulation acceleration

) rererences

AGH

Writing Testbenches: Functional Verification of HDL Models,

2nd edition
Writing Efficient Testbenches Xilinx XAPP199 (v1.1) and later

edtttons Writing=Testhenches
Synthesis and Simulation Design Guide Xilinx RS EEECTEIENEED

http://www.accellera.org/

hittp://www.dvcon.org/
hittp://www.deepchip.com/

lllmJJJ Jim Hogan of Vista Ventures LLC
Z http://www.deepchip.com

250-500K Lines

5-10K Lines of h U ———
x - " o of F/W

sl (g i 3 g ! -é 50-100K Lines of
= il 1 o ~ ol Protocol F/W

>100K Lines of i (l:ve:}:::li::]":;x
Application S/W $ L

z.f,ffo'i.ﬁ'."f,iﬁf : - — 250-300K Lines
of DSP F/W

Wireless

5-10K Lines of - - Up to 2M Lines
Microcode of Network S/W

Typical SoC - dozens of HW blocks but millions of lines of code

m JJJ Project verification
AGH

System Function
Executable Specification

Communicating Processes
Architecture
HWI/SW Partitioning

Implementation

<
2
L)
]
Q
&
]
>
E
(]
b
4
>
0

Free On-Line Dictionary Of Computing (foldoc.org):

Verification: The process of determining whether or not the products of a given phase in the life-cycle
fulfill a set of established requirements. Let's agree on one definition suitable for this paper*: Verification
(or Functional Verification) is the process of checking if the logic design at given stage of development
conforms to the design specification.

*Meeting Growing Verification Demands ALDEC

m JJJ FPGA projects verification

AGH
10,000 Today, code for Verlﬁcathn is -
bigger than code for the design. ..
60,000 and this trend 1s growing
50,000 o A Widening Gap
2 Verification/™ Caused by:
540,000 3
B Code - Bigger designs
£ 30,000 o -More Interfaces
. Design Code (RTL) - More complesity
20,000 - Shorter schedules
. « Verification takes up to 70% project
10,000 BEhElVlOI"Ell time (,critical path”)
—_— ¢ ¢ -+« Verification requires up to twice
0 : ‘ ‘ ‘

resources more then the source code

20,000 30,000 ‘ 40000 50,000 60,000 development (separats teams
(Gates in Design
usually)
« Up to 80% the final project code is the
testbench

lll JJJ FPGA projects verification
AGH

FGPA Complexity On The Rise

» As technology has advanced to sub 0.1 microns, FPGA’s
now feature more SoC like functionality previously targeted
at ASICs...

+ Gate count

% Design Starts CapaCity has
100 .
increased

80 .
\/ « More device
60 4\ features are
2. —FPGAs R
\ available
40 p ./

: ~)
\ A y. A - FPGA device
20 .
& d complexity has
0 ; ; ; ; increased
10K 100K ™ 10M 100M Gates
6 ©2010 EMA Design Automation, Inc. All rights reserved ALD@ EMA‘R?J?E‘?I’I‘E“IJ""
inthe U.S. and other countries ema-eda.com

[ll JJJ ZA:Mentor Verifications Horizonts Blog
The 2018 Wilson Research Group Functional Verification
AGH Study

FPGA: Number of Embedded Microprocessors

40%
. 64% of designs contain embedded processors 2016
5% . . —2018
439% of designs contain 2 or more processors
a0 149% of designs contain 4 or more processors
3
e 2m
)
3
S 1%
o
i
&
10%
5%

0 1 2 3 4 5 6 7 8 or more
Number of Embedded Microprocessors

Source: Wison Research Group and Mentor, A Siemens Busiess, 2018 Functional Venificaton Study
’ g © Mentor Graphics Corperation Mentor

For example, our study found that 64% of all projects targeted their design at an FPGA containing one or more
embedded processors, as shown above

[ll JJJ ZA:Mentor Verifications Horizonts Blog
The 2018 Wilson Research Group Functional Verification

AGH Study

FPGA: Number of Asynchronous Clock Domain

90% of designs being implemented as FPGAs contain two or more asynchronous clock domains. Verifying
requirements associated with multiple asynchronous clock domains has increased both the verification workload and
complexity. For example, a class of metastability bugs cannot be demonstrated on an RTL model using simulation.
To simulate these issues requires a gate-level model with timing, which is often not available until later stages in
the design flow. However, static clock-domain crossing (CDC) verification tools have emerged and are being
adopted to help identify clock domain issues directly on an RTL model at earlier stages in the design flow.

m JJJ Verification

AGH

Specification

[~

€

Interpretation .
Transformation

Source model

Final model

Verification

Transformation : RTL coding, synthesis, implementation

Verification requires reference !!!

Watch out ! ,,human factor” —
when the same developer performs both coding and verification

ulmJJJ Verification concepts

AGH

» Automatic code creation (golden templates...) 5 <
* Problem ,,atomisation”: diminish human factor @@
* Task redundation : two independent teams

Interpretation A

Transformation
Source model A
Specification Final model
Source model B Verification

Interpretation B

[l vermcation strategies

AGH
Functional verification answers
1. Comparison the question: “did I build the
Netlist comparison right thing?” as opposed to
P . implementation verification,
(synthesis/implementation which answers the question
errors)

. “did I build the thing right?”
Synthesis 9

Model RTL

2. Model checking
* Normal and abnormal
situations behaviour

* How to verify the Soecificati RTL coding
abnormal situation? pecification
(FSM faults, bus error, Model RTL

Verification

Synthesis model

Verification

protocol bugs...)

Interpretation

ﬂlmJJJ Verification and testing

AGH
Coding Manufacturing
Specification '@'@
Verification Testing
Errors Found Not found

Wrong project Typ Il /W

Good project Typ 1

Basic goals of any comprehensive verification process: |
1. It must verify that the design does everything it is supposed to do.

2. It must verify that the design does not do anything it is not supposed to do.

3. It must show when the two goals have been met.

No o s

ﬂlmJJJ Verification plan

AGH

Proper and exact specification (when the final version fixed?)
First success plan (the most important functionality done)
Verification level definition:

* unit-level,

* board-level,

+ system-level,

Verification strategies (black-box, white-box, grey-box, random)
Traceability

Priorities (must-have, should-have, nice-to-have)

Easy verification (design for verification)
(loadable units, unit bypass, sample points, error injection
mechanism ...)

@JJJ Functional verification - questions

What Documents?
Hardware Requirements Specification
Commerical Bus/Component Specifications
Hardware Design Specification
Verification Environment Specification
Test Plan
ISO 9000 Process Flow
Error Logs
Status Reports
What Lanaguage for Verification?
Specman (HVL)
Vera (HVL)
System Verilog
SystemC with SCV (SystemC Verification Library)
TestBuilder (C++)
Custom C++
Verilog
VHDL Follow

http://lwww.project-veripage.com/

[umJJJ Functional verification - questions
AGH
What HDL design Language? Data creation?
Verilog Manual
VHDL Random Generation (Pre-run)
Mixed Verilog/VHDL Random Generation (On-the-fly)
What HDL level? Testbench checking?
Block (unit) Manual
Device Golden model
System Self-checking (Post-run)
What test visibility? Self-checking (On-the-fly)
Black box Assertion Checking
White box Are we done?
Gray box Code coverage
Type of test? Functional coverage
Directed Other Considerations?
Random Source Control
Directed Random DUT Performance
What data level? Code Reuse
Vector or bit Regression Testing
Transaction Load Sharing
Simulation performance
Acceleration
Gate Level

!ll]l! Functional verification management

System version control

Verification events handling:
- errors detected,
- specification gaps,
- code refactoring, code optimisation like area/speed,
- new ideas concepts,

Servicing:
- lets talk ... (in minor companies it is enough....©)
problems — no clear responsibility, no records ...
- procedures,
- data bases.

Any method chosen must be effective!!!
Active correction time must be shorter then correction
management time

]]IJJ First things first...
Simple TESTBENCH - example

TESTBENCH DESIGN

Separate Testbench Combo W' Combo Wl sEQ
Processes Data] oglc L Loge

’ RST

: Testbench
\ Clock

Testbench
Reset

General Testbench Guidelines:
-Separate processes :

-Data path,

-System clock,

-Asynchronous signals (like reset....)

lllmm TESTBENCH - example
AGH

lllmm TESTBENCH - example
AGH

10

AGH

ll"]JJ TESTBENCH - WAIT instruction variants

junk : process
begin

wait for 50 ns;
end process;

CLK <="0’, ’1’ after 25 ns; -- not recomended

Faster simulation when
wait for is used

--Process with explicit “wait for time” statement
--This is a testbench process

process
begin

RESET <="'0";
wait for 50 ns;
RESET <="'1";
wait for 50 ns;
RESET <="'0";
wait;

--Process with explicit “wait on or sensitivity list”
--statement process

--Synthesizable (non-testbench) process style
begin

wait on WR;

DATA <= BUS_DATA;

end process;

end process;

process
begin
wait until CLK = 1;
B <=A;

end process;

--Process with explicit “wait until edge” statement
--This is a synthesizable (non-testbench) sequential

ACTH=0

* no RTL coding limits (signal
as we want, wait for etc.)

« faster code development,

* shorter simulation.

lll]JJ TESTBENCH - behavioral coding advantage

TB is the right place for the effective
behavioral VHDL coding

Example - ,,acknowledge process”
-When d_valid=1&ACK=0
-When d_valid=1 & ACK =1

-When d_valid=0 & ACK =1
-When d_valid=0 & ACK=0

Behavioral VHDL coding advantages:

attribute ‘event as many times

1

lumJJJ TESTBENCH - behavioral coding advantage

AGH

comb: process (state, ACK)
begin

next_state <= state;

case state is

When MAKE_REQ=>

d_valid <= ‘1’;
if ACK = ‘1’ then
next_state <= RELEASE;
end if;

when RELEASE=>
d_valid <= ‘0’;
if ACK = ‘0’ then
next_state <= ...;
end if;

end;

SEQ: process (CLK)

begin

if CLK’event and CLK = ‘1’ then
if RESET = ‘1’ then
state <=;
else
state <=next_state;

end process SEQ;

process
begin
d_valid <= ‘1’;
wait until ACK = ‘1’;
d_valid <=‘0’;

wait until ACK = ‘0’;

end process

Easy & fast ...

ulmJJJ TESTBENCH - hints

AGH

--one clock domain signals generation
divider: process
Begin
clk50 <=’0’;
clk100 <="0’;
clk200 <="0’;
loop -- forever
forjin1to 2loop
forkin 1to 2 loop
wait on clk;
clk200 <= not clk200;
end loop;
clk100 <= not clk100;
end loop;
clk50 <= not clk50;
end loop;
end process divider;

-- different clock domain signals generation
-- separate process
Clock_A: process
begin
CLK_A <=’0’;
wait for 200 ns;
CLK <="1’;
wait for 200 ns;
end process;

Clock_B : process

begin

CLK_B <=0’
wait for 33 ns;
CLK_B <=1’

wait for 33 ns;
end process;

12

ll“]l]J TESTBENCH - hints

AGH

decode: process
procedure do_instr(instr:t, data:d) is
begin

end do_instr;

begin

case 1is
when "0000" => do_instr(STOP, data);
when "0001" => do_instr(JMP, data);
when "0010" => do_instr(CALL, data);

end case;

Faster when external
calls limited

I

AGH

Library IEEE;

use [EEE.STD_LOGIC_1164.all;

use [EEE.STD_LOGIC_UNSIGNED.all;

entity bidir_interface is

port (DATA : inout STD_LOGIC_VECTOR(1 downto 0);
READ_WRITE : in STD_LOGIC);

end bidir_ interface ;

architecture XILINX of bidir_ interface is
signal LATCH_OUT : STD_LOGIC_VECTOR(1 downto 0);
begin
process(READ_WRITE, DATA)
begin
if (READ_WRITE = '1’) then
LATCH_OUT <= DATA;
end if;
end process;
process(READ_WRITE, LATCH_OUT)
begin
if READ_WRITE =’0’) then — write active
DATA(0) <= LATCH_OUT(0) and LATCH_OUT(1);
DATA(1) <= LATCH_OUT(0) or LATCH_OUT(1);
else —read active
DATA(0) <=Z’;
DATA(1) <= 'Z’;
end if;
end process;
end XILINX;

]]I]J TESTBENCH - bidirectional signals R/W

& P&

DATA LATCH_OUT

 —

READ_WRITE

BIDIR_INTERFACE

Bidirectional signals
MUST be set to Z’
when are read from TB
side

13

mmJJJ TESTBENCH

- Process/Component connection

Process Component

Signals

TestBench

uuT

Verification stages
Ad Hoc
First success plan
Algorythm based
Simple or advanced but repeatable

File system
Final solution : proces with stimulus files and results

Final solution: self checking Testbench : PASS or FAIL!!!

Ill\"BJJJ TESTBENCH - structural approach

* BFMs to control & monitor I/O transactions

» Externally generated data and expected results

* Concurrent, coordinated system process modeling
* Internal transaction and bus monitors

14

[llmJJJ Active HDL -TB support

AGH

* TB templates

- clock generation,
- signals assigments:
- Concurrent mode,
- Sequenced mode,
- automatic waveform comparison,
- logging,
- random stimuli,

» Standard Waveform and Vector Exchang
WAVES (IEEE-STD-1029.1)

» Code Coverage

* Linting

[llmlJJ Formal verification - Linting

AGH

\

ALINT is a highly optimized HDL design rule checker. ALINT includes a
clear and informative set of violation messages, generated during linting
with a direct cross-link to source code, for early bug detection, ensuring

-Wﬂe early in the design cycle.
ALINT

ALINT
Key Features
*Supports 200 VHDL and Verilog Design Rules.
*Clock Domain Crossing (CDC) support.
*Source code checks, design elaboration and synthesis
T AT emulation.
*User Modified Design Rules.
*Cross-Probing of error messages, Violation Viewer.
*Configuration Management

15

AGH

ll” JJJ Formal verification with ALINT - rules

LINT_3003: Memory '%s
Sample Code:

begin

if (rw = '1’) then
ram(address) := data;
end if;
data <= ram(address);
end if;
end process;

' is read and written at the same time

process (clk, address, data, rw)
type ramtype is array(natural range <>) of std_logic_vector(7 downto 0);
variable ram : ramtype(15 downto 0);

if (rising_edge(clk)) then and

(0 g_edge(clk)) Sample Code:

architecture tb of tb is
signal a, b : std_logic;

LINT_5009 Reset signal '%s' is active high

begin
process (reset)
LINT_3001 begin
Incomplete sensitivity list if (reset = '1') then
Sample Code: a<='0"
process (clk) end if;
begin end process;
if (reset = '1') then process (reset)
sig <='0"; begin
elsif (rising_edge(clk)) then if (reset = '0°) then
sig <= not clk; b<="'0"
end if; end if;
end process; end process;
end architecture tb;

low

 Code Coverage Viewer - C:\My_Designs.

Fla Edt Vew Heb

FA AR T I e A .

@L JJJ AHDL - Code Coverage

[cotzicem [eci. [ecw | | Bickesd | Dass |
hite.. | 5 Tamm s e com [BS [Souee
Lo 0000|1000 -= Machine' Blacklack
4 10000 100X Blacklack_machine: process (CLOCK)
w gk 10000 10003 —— machine varisbles declarations
b3 10000 100X wariable dce :
s 10000 10000
. Joooa 10000 if CLOCK'gvemt and CIOCK = then
B ! if HEW G= them
B =
. .o 00 — Se’ fault valuss tor outp
BEUST o= 10000 10000 =
B HOLD, 10000 10000 MuJ.(E“

the design.
*Code Coverage helps

during the simulation.

Code Coverage provides the following Sy
T e
when TenBack =;

benefits to the designer:

*The users can easily find sections of a
model that have not been exercised by a
testbench. It allows a modification of the
testbench to cover all untested parts of

sections of the model executed very
frequently. This allows the user to
optimize the execution of the model

when TestZl =»

1 +Code Coverage can measure the

*Code Coverage is integrated
into the Active-HDL simulation
kernel.

effectiveness of testbenches so
the most effective test can be run
first. This helps to uncover bugs
in the design verification process
immediately during long
regression tests.

to identify
D Executed

. Mot executed

Statements: 95
Executed: 94 (38,95)

Results for selected item

—

Not executed: 1 (1.05 %]

Results for selected itern and
all its children

=

D Executed, including children
. Mot executed, including children
Statements: 183

Executed, including children: 178 [97.27]
Not executed. including children: & [2.73 %)

16

lll JJJ Verification methodologies
* ALDEC

* UVM, OVM, VMM, AVM, RVM...

SCOREBOARD
—— P COVERAGE |=—

/ COLLECTOR \\

TRANSACTOR
(RECEIVER

TRANSACTION | | TRANSACTOR U
GENERATOR (DRIVER)

UVM, OVM - Universal/Open Verification Methodologies
(VMM) Verification Methodology Manual (VMM)
(AVM) Advanced Verification Methodology

System Verilog SystemC itp.
(OSVVM) Open Source VHDL Verification Methodology http://osvvm.org/

[l" JJJ Open Source VHDL Verification Methodology (OSVVM)
ok http://osvvm.org/

H

OrerSece Open Source VHDL: &

VUM verification Methodologys et

Home About OSVWM

Links

This page contains links to other sources of information that may be helpful to 0S-VVM and VHDL users.
We can place link to your website here if it has ties to VHDL and you are willing to reciprocate (place link to us on your website).

Contact Us form is located at the bottom of the page.

Founders of 0S-VVM

Aldec. Inc.

Aldec is an industry-leading ic Design
verification solutions to assist in the development of complex FPGA, ASIC, SoC and embedded system designs.

ion (EDA) company delivering il design creation, simulation and

With an active user community of over 35,000, 50+ global partners, offices worldwide and a global sales distribution network in
over 43 countries, the company has established itself as a proven leader within the verification design community.

SynthWorks Design, Inc.

SynthWorks provides training in leading edge VHDL verification technigues, including transaction based testing, bus functional

Experts

17

H

[l" JJJ Open Source VHDL Verification Methodology (OSVVM)
ok http://osvvm.org/

SynthWorks

OSVVM Benefits

*

&

&

<

<«

&

e

-

@

+ OSVVM provides advanced verification capabilities

Functional Coverage

Random: Intelligent and Constrained
Error Reporting: Alerts & Logs
Memory Models

» Transaction Level Modeling

Scoreboards

+ Intelligent Coverage = Simple, Powerful, Concise Methodology

Define Functional Coverage
Randomize across coverage holes
Refine with directed, algorithmic, file-based or CR methods

« OSVVM is for the VHDL Community

Works with your existing VHDL Testbench
Re-use or upgrade your current VHDL testbench models
Simple, Concise, Readable

Il

Verification methodologies

* ALDEC
AGH
J ° 10x faster: 100 kHz
SIMULATOR
SCOREBOARD
__—P| COVERAGE |« — ~ . . .
rd SO Sy Simulation acceleration
/ \ DUT in FPGA
‘ \
TRANSACTION | TRANSACTOR DUT TRANSACTOR
GENERATOR (DRIVER) (RECEIVER
FPGA
Jto 1000x faster than simulation: 10 Mhz
SIMULATOR
SCOREBOARD
. . . __—» COVERAGE |«t—
Simulation acceleration r COLLECTOR Y
DUT and TB in FPGA / \
]
TRANSACTION TRANSACTOR DUT TRANSACTOR
GENERATOR (DRIVER) (RECEIVER
FPGA

18

]]IJJ Verification methodologies
* ALDEC

/ * Synthesizable transactor translates
into sequence of bits
* Eliminates HW-SW communication bottleneck

Software % Hardware

MU A U U U UL A U U e

— =
X).1l]
4 l
[)13(i}
DoWrite(Data) /‘L’—I l\
[|
[S I e—— ‘ a
| [[|
] [1
: o
| \ [
! N T

]]IJJ 5;?:; (\:Ierification

Transaction level
system modeling

CPU Mem Custom-IP

rl.nterru pt I I I I I I Arbiter

|CO-processor| ‘ DMA ‘ Bridge

| |
1]
|

1
| DSP | ‘ Mem &
N

SW Developers.
*'Early SW development
= SW erification in complete
* SoC model

: N Desi
s *TLM is used as golden
3| reference

* RTL checked against TLI

* Test harness

* Test scenarios.

* TLM provides expected
response

19

lllmlﬂ SOC Verification

AGH

ALDEC

ezl |G- Standard
™ == Co
Emulation
Modeling
Iterface

lllmlﬂ i?; (\:’erificatiOn

AGH

20

SOC Verification
ALDEC

C++, SystemC + TLM, OSCI simulator

Test Generator & Scoreboard
SCE-M
Test Proxy
Driver bor
Test
Driver
A o

wiwe: Processor
friet Debugger
i

[[§3a] P[] €5 b

e
i/ lne

=

8]
an
n
e
s
i
s
A

Hardware design and verification
*

SIMULATION ACCELERATION AND EMULATION SUCCESS JASON ANDREWS, CADENCE DESIGN

A G H SYSTEMS

Logic simulation

File Edit Search Miew Workspace Design Simulation Waveform Tools Window Help o
Brogd xs 8 @F BO0RMNSHY YR S & wop sins W 4 =
£ QL ®E Q& BY D= o g et 6
Name Value | Stimu P 200 0 400 . L E00 . . B00 . o . 100D o 1200 o 00 0 1600 . o 1800 .
=Lk " Gk [L] LT L[LT LT LT LT LT 7T
o RESET 0 Formula |
= ENABLE 1 k=1
o FULL 0 L
e 3 o 1 2 3 4 5 3 7 & a 0
< 0p) 0 1
=0 0 \ 1
=00 1 I T
= 8o 1 L |] | 1 J 1 [
+ 0 (int 3 o 1 2 3 4 5 & 7 B 3 0

Software simulation refers to an event-driven logic simulator that operates by
propagating input changes through a design until a steady-state condition is reached.
Software simulators run on workstations and use languages such as Verilog®,VHDL,
SystemC, SystemVerilog, and to describe the design and verification enviroment

21

lllm]JJ Hardware design and verification

* SIMULATION ACCELERATION AND EMULATION SUCCESS JASON ANDREWS,
CADENCE DESIGN SYSTEMS

or-demand
wiorkstation access

* Emulation
Emulation refers to the
process of mapping an
entire design into a

hardware platform

designed to further Workstation Hardware engine
increase performance.

There is no constant

connection to the In-circuit emulation

workstation during
execution, and the

on-demand
hardware platform werkstation access
receives no input from
the workstation

Workstation Hardware engine

lllm]JJ Hardware design and verification
AGH

° i Altlum
Proto typing . NanoBoard-NB2
refers to the construction of
custom hardware or the use
of reusable hardware
(breadboard) to construct
a hardware representation
of the system. A prototype
is a representation of the
final system that can be
constructed faster and
made available sooner than
the actual product. This speed 2
is achieved by making
tradeoffs in product
requirements such as
performance and packaging. A common path to a
prototype is to save time by substituting programmable
logic for ASICs. Since prototypes are usually built using
FPGAs, they are often confused with and compared to
emulation systems that also use FPGA technology.

22

m JJJ Hardware design and verification

AGH
Logic simulation | Acceleration In-circuit emulation FPGA prototype
Accurate Faster Fast enough for Inexpensive
embedded software
Flexible Handles large designs Fast enough for
Real world stimulus embedded software
Not fast enough | Debug via simulator
for large designs | userinterface Short impl Long impl
time from RT-level time
Not fast enough | Easier to get working
to test embedded Slower than FPGA Little, if any,
software Not fast enough prototype debug capability
for embedded software
Higher cost than FPGA | Error prone
prototype » Speed factor
a
r 0° —
A 108 —
"// 107 — FPGA prototype
o / 00— T
105 —
\’Y \(}n 104 —
103 —
P ~ 107 —
(&} 10!

1

Event-driven simulation

[T

Coum appicatons
@- op-uﬂ
,......
Driver@I0S
!U)!‘
=

Hardware design and verification

Testbench)

Time

(seconds)
b

10,000,000
1,000,000
100,000
10,000
1,000

10

ays (Needs'

0 Days (Needs
Testbench)

24 Hours
(Limited Detail)

3 Seconds
(Lacks Visibilty)

Pure RTL
Si

Si

Si Sy

ISS/RTL “CIC++” FPGA (In-

stemn Test)

1. FPGA-based prototypes offer an extreme performance
advantage over various software simulation techniques.

This particular example involves the booting of a real-world cell phone designin addition to
requiring a testbench, even a high-capacity, high-performance RTL simulator took 30 days
to boot the system. Similarly, a traditional hardware/software co-verification environment
using an instruction set simulator (ISS) — which also required a testbench — took 10 days to
boot the system. Meanwhile, a C/C++ simulation of the system brought the boot time down
to 24 hours, but this form of verification provided only limited visibility into the internal
workings of the system.

23

Hardware design and verification

AGH
Cost Ease of
(US Dollars) Debugging
100%
‘ e o Visbilty Q
$1,000,000 ! Emulation | | |
| P
$750,000 |Hardware-Accelerate: + 4 s
| Simulation Prototypes
| b ardware-Accelerated Prototypes
§500,000 m va Simulation T 1 f
Q | 1 | (Hardware} | Q |
$250,000 ! | o 0% Emulation
Q ‘ Visibility
1 10 100 1,000 10,000 100,000 1 10 100 1,000 10,000 100,000
Performance (K cydes-per-second) Performance (K cycles-per-second)
2. FPGA-based prototypes give the best price/performance by far. 3G FPGA-based prototypes suffer from limited visibility,

which makes them difficult and time-consuming to debug.

By comparison, an in-system FPGA booted the system in only three seconds. This means
that the FPGA-based environment can be used to verify the system running under real-time
workloads; also that this environment can be used as a platform for embedded and
application software developers to integrate and verify their code in the context of the real
system. The main problem with the FPGA — when used in a traditional verification
environment — is lack of visibility with regard to its internal signals and state, including the
contents of any memories.

The Design Verification Company

Aldec - HES

¥erification mode Simulator Performance Testbench
Hardware acceleration w) 10 - 200 KHZ event based HDL Si mulator
Yector Based Testbench wlo 100 — 500 KHz event based
SystemC co-simulation wla 10 - 500 KHz event based
Hiwé {5 co-veriFication of _ transactionjevent
ARM systems w R L |

TImport the design to DVM

_ Non-synthesizable logic
design | i

)

Synthesis f'fv._
i =t

Place & Route B

Acceleration Board (s)

24

lll JJJ HES SImUIatlon enVIron ment T.fu-.r)g-xignFi-nﬁmr.-'mr(‘:%m%
AGH

DVM

Design
Verification
Manager

Hardware g Simulator
© P R SR R
+ T (7
= 8 "N Ext. models @
| . -—’ £ CPU, memory itp. g
] 5 =3 %
[T AT b1
©
= D Behavioral |/l | |
[72] Testbench [= —
B % : c—————}
m JJJ HES - hardware - software cosimulation
AGH
HES hardware emulation
v" Hardware modules on HES board are Verllog
connected with simulator via PCI ;) .
interface. : :

v" Logic modules connections are made by
software links (black lines on a picture).

v" Logic inter modules connections are
made also by software links (red lines on
a picture).

v" All kind connection are simulated: inputs,
outputs, 3-state and bidirectional.

Project

Software simulator

lll JJJ HES Incremental development

AGH
Phase 1 | Phase 2 ‘ Phase 3 ‘ Phase 4
TESTBENCH 1 TESTBENCH | TESTBENCH | TESTBENCH
= A5 o M s 0
E - B —>| A D ||—> D

BLOCK
A

BLOCK | BLOC
A ||l ¢

BLOCK BLOCI
B Cc

BLOCK | BLOC!
B Cc
¥

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
| Prepare | Prepare
\ to HES | to HES
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

‘ Prepare ‘ Prepare
to HES to HES
- - | -

Total Simulation Time for HES with simulator and Simulator alone

withHESD:D D:D I:I:D l:l:l
aloneD:I:I I:I:I:I:I ||||||||||||

[] Testbench execution [] Design-in-simulator [Design-in-hardware
time factor time factor time factor

LDEC

THE DESIGN VERIFICATION COMPANY

* Xilinx

« Virtex V800

* Virtex 2xV2000
o Altera
g e Apex 1000
o « Inne uklady FPGA

86352AF 50121
42

26

«Third party boards

DINI Group

DN Boards
capacity up to:
37M ASIC gates

Synopsys
HAPS-54
capacity up to:
8M ASIC gates

ALDEC

HES5

capacity up to:
5M ASIC gates

27

