
1

Advanced
data types

Module: Electronics & Telecomunication, 5rd year

Programmable Logical Devices

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 1

Agenda

• Predefined Types

• Extended Types
– Enumerated Types

– Subtypes

• Composite Types
– Arrays

– Records

• Impure functions

• Other types
– Lines

– Files

• Advanced ☺ code example

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 2

2

Predefined Types

„standard” package

package standard is
type boolean is (false, true);
type bit is ('0', '1');
type character is (

nul, soh, stx, etx, eot, enq, ack, bel,...
...‘a', ‘b', ‘c', ‘d', ‘e', ‘f', ‘g', ‘h‘,....);

type severity_level is (note, warning, error, failure);
type integer is range -2147483647 to 2147483647;
type real is range -1.0E308 to 1.0E308;
type time is range -2147483647 to 2147483647
units

fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units;

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 3

Predefined Types

„standard” package

subtype delay_length is time range 0 fs to time'high
impure function now return delay_length;
subtype natural is integer range 0 to integer'high;
subtype positive is integer range 1 to integer'high;
type string is array (positive range <>) of character;
type bit_vector is array (natural range <>) of bit;
type file_open_kind is (

read_mode,
write_mode,
append_mode);

type file_open_status is (
open_ok,
status_error,
name_error,
mode_error);

attribute foreign : string;
end standard;

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 4

3

Extended Types

Enumerated Types

The enumeration type is a type with an ordered set of values, called
enumeration literals, and consisting of identifiers and character
literals. Each of enumeration literals must be unique within the given
declaration type.

Syntax:

type identifier is (item {, item});

item: {character_literal | identifier}

Examples:

literals: type fiveval is (‘?’, ‘0’, ‘1’, ‘Z’, ‘X’);
identifiers: type light is (red, yellow, green);

type instr is (load, store, add, sub);

BTW. Many types defined within the standard package have
enumerated type syntax

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 5

Extended Types

Enumerated Types

architecture behave of cpu is

type instr is (lda, sta, add);

begin process

variable a, b, data: integer;

variable opcode: instr;

begin

process (...)

..........

case opcode is

when lda => a := data;

when sta => data := a;

when add => a := a + data;

end case;

wait on data;

end process;

end behave;

Synthesis:

00 add

01 lda

10 sta

11 ---

type instr is
(add,lda,ldb,invalid);

All enumerated values are
ordered and each of them has a
numeric (integer) value assigned
to it. The number indicates the
position of the literal. The
very first literal in the
definition has position number
zero and each subsequent has the
number increased by one from its
predecessor

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 6

4

Extended Types

Enumerated Types

Enumeration types troubles

Different enumeration types may use the same literals. In this case,
it is said that such literals are overloaded. When such a literal is
referenced in the source code, its is determined from the context, in
which enumeration this literal has occurred.

type ENUM_1 is (AAA, BBB, ’A’, ’B’, ZZZ);

type ENUM_2 is (CCC, DDD, ’C’, ’D’, ZZZ);

AAA –– Enumeration identifier of type ENUM_1

’B’ –– Character literal of type ENUM_1

CCC –– Enumeration identifier of type ENUM_2

’D’ –– Character literal of type ENUM_2

ENUM_1’(ZZZ) –– Qualified because overloaded

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 7

VHDL data types

Type casting /function overloading

Example 1:

bit’(‘1’) – ‘1’ as a bit? or ‘1’ as the std_logic ?

Example 1:

function ToInt (d: bit_vector) return (integer);
function ToInt (d: std_logic_vector) return (integer);

ToInt(“1010”); -- ???

ToInt(bit_vector’(“1010”)); -- OK!

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 8

5

VHDL data types

Type convertion

VHDL is strongly typed language. Objects of user-defined types
cannot directly be assigned to or from objects of even a closely
related type. A type conversion allows the assignment to be
made:

type BUS_VAL is range 0 to 255;

variable X_INT : integer := 22;

variable X_BUS : BUS_VAL;

...

X_BUS := X_INT; --illegal

X_BUS := CONVERT_BUS_VAL(X_INT); -- function required

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 9

VHDL data types

Type convertion

type fourval is (‘X’, ‘L’, ‘H’, ‘Z’);

type value4 is (‘X’, ‘0’, ‘1’, ‘Z’);

process;

variable abc: fourval;

variable xyz: value4;

begin

xyz := convert4val (abc); -- conversion function call

end process;

function convert4val (s: fourval) return value4 is

begin

case s is

when ‘X’ => return ‘X’;

when ‘L’ => return ‘0’;

when ‘H’ => return ‘1’;

when ‘Z’ => return ‘Z’;

end case; end convert4val;
Rajda & Kasperek © 2017 Katedra Elektroniki AGH 10

6

VHDL data types

Type convertion

Very often we need to convert from/to integer from/to std_logic_vector.

Use packages IEEE.std_logic_unsigned and IEEE.std_logic_arith !

function conv_integer (arg: std_logic_vector)
return integer;

function conv_std_logic_vector (arg: integer; size: integer)
return std_logic_vector;

Example:

entity sel is
port (a,b,s: in integer range 0 to 15;

q: out std_logic_vector (3 downto 0));
end;

architecture good of sel is
begin
q <= conv_std_logic_vector(a,4) when conv_integer(s) = 8 else

conv_std_logic_vector(b,4);
end;

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 11

VHDL data types

Type convertion

If all signals are std_logic_vector, the code would be smarter:

architecture better of sel is
begin

q <= a when conv_integer(s) = 8 else b;
end;

If synthesis supprts operator overloading, the code would be

shorter :

architecture best of sel is
begin

q <= a when s = 8 else b;
end;

From the synthesis point of view, the conversion function does not

matter – there is no extra logic added (but it matter for simulation

time!).

So, here comes a good advice:

Use std_logic_vector to get faster simulation

and predictable synthesis.

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 12

7

Extended Types

Enumerated Types – FSM example

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 13

Extende d Types

Enumerated Types – FSM example

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 14

architecture transmit of transmit is
-- diagram signals declarations
signal DATA_REG: STD_LOGIC_VECTOR (9 downto 0);
signal T_DATA_CNT: INTEGER range 0 to 11;
signal T_TIME_CNT: INTEGER range 0 to 200;
-- ONE HOT ENCODED state machine: TX_RS232
type TX_RS232_type is (NEW_BYTE, SEND_BIT, START_TX, WAIT_T_BIT);
attribute enum_encoding : string;
attribute enum_encoding of TX_RS232_type: type is

"0001 " & -- NEW_BYTE
"0010 " & -- SEND_BIT
"0100 " & -- START_TX
"1000" ; -- WAIT_T_BIT

signal TX_RS232: TX_RS232_type;
begin
-- concurrent signals assignments
-- diagram ACTIONS
--
-- Machine: TX_RS232
--
TX_RS232_machine: process (CLK, reset)
begin
if RESET='0' then

TX_RS232 <= START_TX;
-- Set default values for registered outputs/signals and for variables
-- ...
T_TIME_CNT <= 0;
T_DATA_CNT <= 0;
DATA_REG <= "0000000000";
TxD <= '1';

elsif CLK'event and CLK = '1' then
-- Set default values for registered outputs/signals and for variables

8

Extended Types

Enumerated Types – FSM example

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 15

TX_RS232_machine: process (CLK, reset)
begin
if RESET='0' then

TX_RS232 <= START_TX;
-- Set default values for registered outputs/signals and for variables
-- ...
T_TIME_CNT <= 0;
T_DATA_CNT <= 0;
DATA_REG <= "0000000000";
TxD <= '1';

elsif CLK'event and CLK = '1' then
-- Set default values for registered outputs/signals and for variables
-- ...
case TX_RS232 is

when NEW_BYTE =>
if READY='1' then

TX_RS232 <= SEND_BIT;
T_TIME_CNT <= 0;
DATA_REG <= '1'&DATA&'0';
T_DATA_CNT <= 0;

elsif READY='0' then
TX_RS232 <= NEW_BYTE;

end if;
when SEND_BIT =>

TxD <= DATA_REG(T_DATA_CNT);
T_DATA_CNT <= T_DATA_CNT+1;
TX_RS232 <= WAIT_T_BIT;
T_TIME_CNT <= 0;

when START_TX =>
T_TIME_CNT <= 0;
T_DATA_CNT <= 0;
DATA_REG <= "0000000000";

...........

Extended Types

Subtypes

A subtype is a type with a constraint. It is used to limit the range on
the original type.

Examples:

subtype digit is integer range 0 to 9;
variable msd, lsd: digit;

Same as:
variable msd, lsd: integer range 0 to 9;

type instr is (add, sub, mul, div, sta, stb, outa, xfr);
subtype arith is instr range add to div;
subtype pos is integer range 1 to 2147483647;
subtype nano is time range 0 ns to 1 us;

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 16

9

Extended Types

Subtypes

Important notes

• A subtype declaration does not define a new type.

• A subtype is the same type as its base type; thus,

no type conversion is needed when objects of a subtype and

its base type are assigned (in either direction). Also, the set

of operations allowed on operands of a subtype is the same as

the set of operations on its base type.

• Using subtypes of enumerated and integer types for synthesis

is strongly recommended as synthesis tools infer an

appropriate number of bits in synthesized registers,

depending on the range.

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 17

Extended Types

Subtypes examples

subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;
NATURAL is a numeric subtype of the type INTEGER of the range from 0 to
INTEGER'HIGH. The subtype values represent mathematical natural numbers. All
of the basic mathematical functions such as addition, subtraction, multiplication,
and division can be applied to operands of the NATURAL subtype.

subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;
POSITIVE is a numeric subtype of the type INTEGER of the range from 1 to
INTEGER'HIGH. The subtype values represent mathematical natural numbers that
are greater than 0. All of the basic mathematical functions such as addition,
subtraction, multiplication, and division can be applied to operands of the
POSITIVE subtype.

subtype DELAY_LENGTH is TIME range 0 fs to TIME'HIGH;
DELAY_LENGTH is a subtype of the TIME type of the range from 0 to TIME'HIGH.
The DELAY_LENGTH subtype is used to represent the value of the simulation time.

subtype WIDTH is NATURAL;
WIDTH is a subtype representing NATURAL values used for specifying widths of
output fields. The subtype is used in the FIELD parameter of the WRITE procedure
that is provided in the TEXTIO package.

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 18

10

Extended Types

Subtypes examples

The std_logic_1164 package provides four additional subtypes of the
STD_ULOGIC type. Like STD_LOGIC, all of them are resolved (using the
same resolution functions RESOLVED) but their sets of values are
narrowed.

Syntax

subtype X01 is RESOLVED STD_ULOGIC range 'X' to '1';

subtype X01Z is RESOLVED STD_ULOGIC range 'X' to 'Z';

subtype UX01 is RESOLVED STD_ULOGIC range 'U' to '1';

subtype UX01Z is RESOLVED STD_ULOGIC range 'U' to 'Z';

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 19

Type name Set of values

X01 'X', '0', '1'

X01Z 'X', '0', '1', 'Z'

UX01 'U', 'X', '0', '1'

UX01Z 'U', 'X', '0', '1', 'Z’

Composite Types

Arrays

Array formal definition
A type, the value of which consists of elements that are all of
the same subtype (and hence, of the same type). Each element
is uniquely distinguished by an index (for a one-dimensional
array) or by a sequence of indexes (for a multidimensional
array). Each index must be a value of a discrete type and must
lie in the correct index range.

• Usefull to buses & registers sets description

There are predefined arrays :

• bit_vector (package STANDARD)
• string (package STANDARD)
• std_logic_vector (package STD_LOGIC_1164)

To use the other arrays type, one must define them !

(like for real i integer)

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 20

11

Composite Types

Arrays

Syntax:
type name is array [index_constraint] of element_type;

index_constraint: [range_spec] -- constrained
index_type range [range_spec] -- constrained
index_type range <> -- unconstrained

An array may be either constrained or unconstrained. The
array is constrained if the size of the array is
constrained. The size of the array can be constrained
using a discrete type mark or a range. In both cases,
the number of the elements in the array is known during
the compilation.

Examples:
type word8 is array (1 to 8) of bit;

type word8 is array (integer range 1 to 8) of bit;
type word is array (integer range <>) of bit;
type ram is array (1 to 8, 1 to 10) of bit;

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 21

Composite Types

Arrays

When type is defined properly, it can be used to object
(signal/variable) declaration.

Examples :
variable data_bus: word8;
variable register: word (1 to 10);

Enumerated type or subtype can be used to index an array.

Examples :
type instruction is (add, sub, mul, div, lda, sta, xfr);
subtype arithmetic is instruction range add to div;
subtype digit is integer range 1 to 9;

type Ten_bit is array (digit) of bit;
type Inst_flag is array (instruction) of digit;

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 22

12

Composite Types

Multidimensional Arrays

Usefull for memories (RAM or ROM)

Example:
type memory is array (0 to 7, 0 to 3) of bit;
constant rom: memory := ((‘0’, ‘0’, ‘0’, ‘0’),

(‘0’, ‘0’, ‘0’, ‘1’),
(‘0’, ‘0’, ‘1’, ‘0’),
(‘0’, ‘0’, ‘1’, ‘1’),
(‘0’, ‘1’, ‘0’, ‘0’),
(‘0’, ‘1’, ‘0’, ‘0’),
(‘0’, ‘1’, ‘1’, ‘0’),
(‘0’, ‘1’, ‘0’, ‘1’));

data_bit := rom(5,3); -- word 5, bit 3

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 23

Composite Types

Arrays of the Arrays

Example :

type word is array (0 to 3) of bit;
type memory is array (0 to 4) of word;
variable addr, index: integer;
variable data: word;
constant rom_data: memory := ((‘0’, ‘0’, ‘0’, ‘0’),

(‘0’, ‘0’, ‘0’, ‘1’),
(‘0’, ‘0’, ‘1’, ‘0’),
(‘0’, ‘1’, ‘1’, ‘1’),
(‘0’, ‘1’, ‘1’, ‘1’));

data := rom_data(addr);

rom_data(addr)(index) --access

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 24

13

Composite Types

Records

The record type allows declaring composite objects whose elements
can be of different types. This is the main difference from arrays,
which must have all elements of the same type

Example :
type two_digit is record

sign: bit;
msd: integer range 0 to 9;
lsd: integer range 0 to 9;

end record;
process
variable acntr, bcntr: two_digit;

begin
acntr.sign := ‘1’;
acntr.msd := 1;
acntr.lsd := acntr.msd;
bcntr := two_digit’(‘0’,3,6);

end process;

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 25

Composite Types

Instruction alias

The alias declares an alternative name for any existing object:
signal, variable, constant or file. It can also be used for "non-
objects": virtually everything, which was previously declared,
except for labels, loop parameters, and generate parameters.
Alias does not define a new object. It is just a specific name
assigned to some existing object.

Example :

signal count: bit_vector (1 to 9);
alias sign: bit is count (1);
alias msd: bit_vector (1 to 4) is count (2 to 5);
alias lsd: bit_vector (1 to 4) is count (6 to 9);

count := “1_1001_0000”;
sign := ‘1’;
msd := “1001”;
lsd := msd;

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 26

14

Sequential statements

Impure function

Functions return a single value. When the function is called the
formal parameters are given the values of the actual parameters.

Syntax:
[impure] function name [(parameter: type;...)] return type is
declarations
begin

sequential statements;
end [name];

Functions can be either pure (which is default) or impure. Pure
functions always return the same value for the same set of actual
parameters. Impure functions may return different values for the
same set of parameters. Additionally, an impure function may have
"side effects", like updating objects outside of their scope, which is
not allowed for pure functions.

impure function now return delay_length;

27Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Sequential statements

Impure function

variable number: INTEGER := 0;
impure function strange_impure_function(A: INTEGER)
return INTEGER is

variable counter: INTEGER;
begin

counter := A + number;
number := number + 10;
return counter;

end;

28Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

15

Predefined text types

text & line types

TEXT is a file type representing files of variable-length text strings (ASCII
records).
LINE is an access type designating a STRING value which is a line to write
to a file or a line that has just been read from the file. The LINE type is the
basic unit upon which all TextIO operations are performed.

STD library - TEXTIO Package:
readline, read, writeline, write

Example:
readline (F: in text; L: out line);
read (L: inout line; ITEM: integer);

IEEE library – STD_LOGIC_TEXTIO Package:
read, write
oread, owrite
hread, hwrite

Predefined:
endfile(filename), endline(linename)

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 29

Uuups,
this is not the end �

- see the working
example now!

Rajda & Kasperek © 2017 Katedra Elektroniki AGH 30

