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HDL projects 
verification 

Module: Electronics & Telecomunication, 5rd year

Hardware Acceleration 
of Telecommunication Protocols
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• Verification definition

• Types of verification

• HDL Testbench template

• AHDL TB & ALINT CODE COVERAGE

• Simulation, emulation, prototyping

• Simulation acceleration

Agenda
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• Writing Testbenches: Functional Verification of HDL Models, 

2nd edition

• Writing Efficient Testbenches Xilinx XAPP199 (v1.1) and later

editions

• Synthesis and Simulation Design Guide Xilinx

• http://www.accellera.org/

• http://verificationacademy.com

• http://www.dvcon.org/

• http://www.deepchip.com/

References 
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Typical SoC - dozens of HW blocks but millions of lines of code
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Project verification

Free On-Line Dictionary Of Computing (foldoc.org): 

Verification: The process of determining whether or not the products of a given phase in the life-cycle 

fulfill a set of established requirements. Let's agree on one definition suitable for this paper*: Verification 

(or Functional Verification) is the process of checking if the logic design at given stage of development 

conforms to the design specification. 

*Meeting Growing Verification Demands ALDEC
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• Verification takes up to 70% project 
time („critical path”) 

• Verification requires up to twice 

resources more then the source code 

development (separate teams 

usually)

• Up to 80% the final project code is the 

testbench

FPGA projects verification
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FPGA projects verification
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Verification

Source model Final model

Transformation

Verification

Verification requires reference !!! 

Transformation : RTL coding, synthesis, implementation

Watch out ! „human factor” –
when the same developer performs both coding and verification

Specification

Interpretation
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Verification concepts

• Automatic code creation (golden templates...)

• Problem „atomisation”: diminish human factor

• Task redundation : two independent teams

Specification

Source model A

Final model

Interpretation A
Transformation

Verification
Source model BInterpretation B
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Verification strategies 
(functional/implementation)

Model RTL Synthesis model

Synthesis

Verification

1. Comparison 
Netlist comparison 
(synthesis/implementation 
errors)

Specification

Model RTL

RTL coding

Verification„Faults”

Interpretation

2. Model checking
• Normal and abnormal 
situations behaviour

• How to verify the 
abnormal situation? 
(FSM faults, bus error, 

protocol bugs...)

Functional verification answers 

the question:  “did I build the 

right thing?” as opposed to 

implementation verification, 

which answers the question 

“did I build the thing right?”
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Verification and testing

Model

Coding

Verification

Specification Device

Manufacturing

Testing

Errors Found Not found

Wrong project Typ II

Good project Typ I

Basic goals of any comprehensive verification process:

1. It must verify that the design does everything it is supposed to do.

2. It must verify that the design does not do anything it is not supposed to do.

3. It must show when the two goals have been met.
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Verification plan

1. Proper and exact specification (when the final version fixed?)

2. First success plan  (the most important functionality done )

3. Verification level definition:

• unit-level, 

• board-level,

• system-level, 

4. Verification strategies (black-box, white-box, grey-box, random)

5. Traceability

6. Priorities (must-have, should-have, nice-to-have)

7. Easy verification (design for verification) 

(loadable units, unit bypass, sample points, error injection 

mechanism ...) 
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Functional verification - questions

What Documents? 
Hardware Requirements Specification 

Commerical Bus/Component Specifications 

Hardware Design Specification 

Verification Environment Specification

Test Plan 

ISO 9000 Process Flow 

Error Logs 

Status Reports 

What Lanaguage for Verification? 
Specman (HVL) 

Vera (HVL) 

System Verilog 

SystemC with SCV (SystemC Verification Library) 

TestBuilder (C++) 

Custom C++ 

Verilog 

VHDL Follow

http://www.project-veripage.com/
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Functional verification - questions

What HDL design Language? 
Verilog 

VHDL 

Mixed Verilog/VHDL 

What HDL level? 
Block (unit) 

Device 

System 

What test visibility? 
Black box 

White box 

Gray box 

Type of test? 
Directed 

Random 

Directed Random 

What data level? 
Vector or bit 

Transaction 

Data creation? 
Manual 

Random Generation (Pre-run) 

Random Generation (On-the-fly) 

Testbench checking? 
Manual 

Golden model 

Self-checking (Post-run) 

Self-checking (On-the-fly) 

Assertion Checking

Are we done? 
Code coverage 

Functional coverage 

Other Considerations? 
Source Control 

DUT Performance 

Code Reuse 

Regression Testing 

Load Sharing 

Simulation performance 

Acceleration 

Gate Level
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Functional verification management

System version control

Verification events handling:

- errors detected,

- specification gaps,

- code refactoring, code optimisation like area/speed,

- new ideas concepts,

Servicing:

- lets talk ... (in minor companies it is enough....☺)

problems – no clear responsibility, no records ...

- procedures,

- data bases.

Any method chosen must be effective!!! 

Active correction time must  be shorter then correction 

management time
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First things first… 
Simple TESTBENCH – example

General Testbench Guidelines:

-Separate processes : 

-Data path, 

-System clock, 

-Asynchronous signals (like reset....)
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TESTBENCH – example

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity counter_tb is

end counter_tb;

architecture TB_ARCHITECTURE of counter_tb is

component counter -- Component declaration of the tested unit

port( CLK : in STD_LOGIC;

DATA : in STD_LOGIC_VECTOR(3 DOWNTO 0);

RESET : in STD_LOGIC;

LOAD : in STD_LOGIC;

Q : out STD_LOGIC_VECTOR(3 DOWNTO 0) );

end component;

-- Stimulus signals - signals mapped to the input and inout ports of tested entity

signal CLK : STD_LOGIC;

signal DATA : STD_LOGIC_VECTOR(3 DOWNTO 0);

signal RESET : STD_LOGIC;

signal LOAD : STD_LOGIC;

-- Observed signals - signals mapped to the output ports of tested entity

signal Q : STD_LOGIC_VECTOR(3 DOWNTO 0);

-- User can put declaration here

shared variable ENDSIM: boolean:=false;

constant CLK_PERIOD:time:= 30 ns;

constant RESET_LENGTH:time:= 50 ns; TB part 1
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TESTBENCH – example

begin

-- Unit Under Test port map

UUT : counter

port map

(CLK => CLK,

DATA => DATA,

RESET => RESET,

LOAD => LOAD,

Q => Q );

-- User can put stimulus here

CLK_GEN: process

begin

if ENDSIM=false then

CLK <= '0';

wait for CLK_PERIOD/2;

CLK <= '1';

wait for CLK_PERIOD/2;

else

wait;

end if;

end process;

-- reset process

RES: process

begin RESET<='0';  

wait for RESET_LENGTH;

RESET<='1';

wait; 

end process;

-- stimulus  process

STIM: process

begin

DATA<="0110";

LOAD<='0';

wait for 350 ns;

LOAD<='1';

wait for 50 ns;

LOAD<='0';

wait for 100 ns;

ENDSIM:=true;

wait;

end process;

end TB_ARCHITECTURE;
TB part 2 TB part 3
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TESTBENCH – WAIT instruction variants

junk : process

begin

CLK <= ’0’, ’1’ after 25 ns; -- not recomended

wait for 50 ns;

end process;

Faster simulation when 

wait for is used

--Process with explicit “wait for time” statement

--This is a testbench process

process

begin

RESET <= '0';

wait for 50 ns;

RESET <= '1';

wait for 50 ns;

RESET <= '0';

wait;

end process;

--Process with explicit “wait until edge” statement

--This is a synthesizable (non-testbench) sequential

process

begin

wait until CLK = 1;

B <= A;

end process;

--Process with explicit “wait on or sensitivity list”

--statement process

--Synthesizable (non-testbench) process style

begin

wait on WR;

DATA <= BUS_DATA;

end process;

--Combination of “wait on, until, and or” statement

--Synthesizable (non-testbench) process style

wait on IN1 until CLK = ’0’;
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TESTBENCH – behavioral coding advantage

TB is the right place for the effective 

behavioral VHDL coding

Example – „acknowledge process”

–When d_valid = 1 & ACK = 0

–When d_valid = 1 & ACK = 1

–When d_valid = 0 & ACK = 1

–When d_valid = 0 & ACK = 0

Behavioral VHDL coding advantages: 

• no RTL coding limits  (signal attribute  ‘event as many times 

as we want, wait for etc.)

• faster code development,

• shorter simulation.

Rajda & Kasperek © 2017 Katedra Elektroniki AGH
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TESTBENCH – behavioral coding advantage

comb: process (state, ACK)

begin

next_state <= state;

case state is

...

when MAKE_REQ=>

d_valid <= ‘1’;

if ACK = ‘1’ then

next_state <= RELEASE;

end if;

when RELEASE=>

d_valid <= ‘0’;

if ACK = ‘0’ then

next_state <= ...;

end if;

...

end;

SEQ: process (CLK)

begin

if CLK’event and CLK = ‘1’ then

if RESET = ‘1’ then

state <= ….;

else

state <=next_state;

……

end process SEQ;

process

begin

...

d_valid <= ‘1’;

wait until ACK = ‘1’;

d_valid <= ‘0’;

wait until ACK = ‘0’;

...

end process

Easy & fast ...
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TESTBENCH – hints

--one clock  domain signals generation

divider: process

Begin

clk50 <= ’0’;

clk100 <= ’0’;

clk200 <= ’0’;

loop -- forever

for j in 1 to 2 loop

for k in 1 to 2 loop

wait on clk;

clk200 <= not clk200;

end loop;

clk100 <= not clk100;

end loop;

clk50 <= not clk50; 

end loop;

end process divider;

-- different clock domain signals generation

-- separate process

Clock_A : process

begin

CLK_A <= ’0’;

wait for 200 ns;

CLK <= ’1’;

wait for 200 ns;

end process;

Clock_B : process

begin

CLK_B <= ’0’;

wait for 33 ns;

CLK_B <= ’1’;

wait for 33 ns;

end process;
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TESTBENCH – hints

decode: process

procedure do_instr(instr:t, data:d) is

begin

....

end do_instr;

begin

case I1 is

when "0000" => do_instr(STOP, data);

when "0001" => do_instr(JMP, data);

when "0010" => do_instr(CALL, data);

...

end case;

decode: process

procedure do_instr(instr:t, data:d) is

begin

....

end do_instr;

begin

case I1 is

when "0000" => instr := STOP;

when "0001" => instr := JMP;

when "0010" => instr := CALL;

...

end case;

do_instr(instr, data);

...

Faster when external 

calls limited
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TESTBENCH – bidirectional signals R/W

Library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity bidir_interface is

port (              DATA : inout STD_LOGIC_VECTOR(1 downto 0);

READ_WRITE : in STD_LOGIC);

end bidir_ interface ;

architecture XILINX of bidir_ interface is

signal LATCH_OUT : STD_LOGIC_VECTOR(1 downto 0);

begin

process(READ_WRITE, DATA)

begin

if (READ_WRITE = ’1’) then

LATCH_OUT <= DATA;

end if;

end process;

process(READ_WRITE, LATCH_OUT)

begin

if (READ_WRITE = ’0’) then  – write active

DATA(0) <= LATCH_OUT(0) and LATCH_OUT(1);

DATA(1) <= LATCH_OUT(0) or LATCH_OUT(1);

else – read active 

DATA(0) <= ’Z’;

DATA(1) <= ’Z’;

end if;

end process; 

end XILINX;

Bidirectional signals 

MUST be  set  to  ‘Z’ 

when  are read from TB 

side

Rajda & Kasperek © 2017 Katedra Elektroniki AGH

DATA

READ_WRITE

LATCH_OUT

BIDIR_INTERFACE
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TESTBENCH 
– Process/Component connection

Verification stages

• Ad Hoc

First success plan

• Algorythm based

Simple or advanced but repeatable 

• File system

Final solution : proces with stimulus files and results

Final solution: self checking Testbench : PASS or FAIL!!!

Process Component

Signals
UUTTestBench
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TESTBENCH – structural approach

• BFMs to control & monitor I/O transactions

• Externally generated data and expected results

• Concurrent, coordinated system process modeling

• Internal transaction and bus monitors
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Active HDL –TB support

• TB templates

- clock generation,

- signals assigments: 

- Concurrent mode,

- Sequenced mode,

- automatic waveform comparison, 

- logging, 

- random stimuli,

• Standard Waveform and Vector Exchang

WAVES (IEEE-STD-1029.1)

• Code Coverage

• Linting
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Formal verification - Linting

ALINT is a highly optimized HDL design rule checker. ALINT includes a 

clear and informative set of violation messages, generated during linting 

with a direct cross-link to source code, for early bug detection, ensuring 

correct RTL code early in the design cycle.

Key Features

•Supports 200 VHDL and Verilog Design Rules.

•Clock Domain Crossing (CDC) support.

•Source code checks, design elaboration and synthesis 

emulation.

•User Modified Design Rules.

•Cross-Probing of error messages, Violation Viewer.

•Configuration Management
Rajda & Kasperek © 2017 Katedra Elektroniki AGH
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Formal verification with ALINT - rules

LINT_3003:   Memory '%s' is read and written at the same time

Sample Code:

process (clk, address, data, rw)

type ramtype is array(natural range <>) of std_logic_vector(7 downto 0);

variable ram : ramtype(15 downto 0);

begin

if (rising_edge(clk)) then

if (rw = '1') then

ram(address) := data;

end if;

data <= ram(address);

end if;

end process; LINT_3001

Incomplete sensitivity list

Sample Code:

process (clk)

begin

if (reset = '1') then

sig <= '0';

elsif (rising_edge(clk)) then

sig <= not clk;

end if;

end process;

LINT_5009 Reset signal '%s' is active high 

and low

Sample Code:

architecture tb of tb is

signal a, b : std_logic;

begin

process (reset)

begin

if (reset = '1') then

a <= '0';

end if;

end process;

process (reset)

begin

if (reset = '0') then

b <= '0';

end if;

end process;

end architecture tb;
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AHDL – Code Coverage

•Code Coverage is integrated 

into the Active-HDL simulation 

kernel.

•Code Coverage can measure the 

effectiveness of testbenches so 

the most effective test can be run 

first. This helps to uncover bugs 

in the design verification process 

immediately during long 

regression tests.

Code Coverage provides the following 

benefits to the designer:

•The users can easily find sections of a 

model that have not been exercised by a 

testbench. It allows a modification of the 

testbench to cover all untested parts of 

the design.

•Code Coverage helps to identify 

sections of the model executed very 

frequently. This allows the user to 

optimize the execution of the model 

during the simulation.
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Verification methodologies
* ALDEC 

UVM, OVM - Universal/Open Verification Methodologies

(VMM) Verification Methodology Manual (VMM)

(AVM) Advanced Verification Methodology

System Verilog SystemC itp.

(OSVVM) Open Source VHDL Verification Methodology http://osvvm.org/
Rajda & Kasperek © 2017 Katedra Elektroniki AGH

Open Source VHDL Verification Methodology (OSVVM)

http://osvvm.org/
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Open Source VHDL Verification Methodology (OSVVM)

http://osvvm.org/
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Verification methodologies
* ALDEC 

Simulation acceleration 

DUT in FPGA

Simulation acceleration 

DUT and TB in FPGA

Rajda & Kasperek © 2017 Katedra Elektroniki AGH
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Verification methodologies
* ALDEC

Rajda & Kasperek © 2017 Katedra Elektroniki AGH

SOC Verification 
ALDEC

Transaction level 

system modeling
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SOC Verification 
ALDEC

Standard

Co

Emulation

Modeling

Iterface
Rajda & Kasperek © 2017 Katedra Elektroniki AGH

SOC Verification 
ALDEC
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SOC Verification 
ALDEC
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Hardware design and verification
* SIMULATION ACCELERATION AND EMULATION SUCCESS JASON ANDREWS, CADENCE DESIGN

SYSTEMS

Logic simulation

Software simulation refers to an event-driven logic simulator that operates by 

propagating input changes through a design until a steady-state condition is reached. 

Software simulators run on workstations and use languages such as Verilog®,VHDL, 

SystemC, SystemVerilog, and to describe the design and verification enviroment

Rajda & Kasperek © 2017 Katedra Elektroniki AGH
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Hardware design and verification
* SIMULATION ACCELERATION AND EMULATION SUCCESS JASON ANDREWS, 
CADENCE DESIGN SYSTEMS

• Emulation
Emulation refers to the 

process of mapping an 

entire design into a 

hardware platform 

designed to further

increase performance. 

There is no constant

connection to the 

workstation during 

execution, and the 

hardware platform 

receives no input from 

the workstation

In-circuit emulation
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Hardware design and verification

• Prototyping
refers to the construction of

custom hardware or the use

of reusable hardware

(breadboard) to construct 

a hardware representation

of the system. A prototype 

is a representation of the

final system that can be 

constructed faster and 

made available sooner than 

the actual product. This speed

is achieved by making 

tradeoffs in product 

requirements such as 

performance and packaging. A common path to a 

prototype is to save time by substituting programmable 

logic for ASICs. Since prototypes are usually built using 

FPGAs, they are often confused with and compared to 

emulation systems that also use FPGA technology.
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Hardware design and verification

Rajda & Kasperek © 2017 Katedra Elektroniki AGH

Hardware design and verification

This particular example involves the booting of a real-world cell phone designIn addition to 

requiring a testbench, even a high-capacity, high-performance RTL simulator took 30 days 

to boot the system. Similarly, a traditional hardware/software co-verification environment 

using an instruction set simulator (ISS) – which also required a testbench – took 10 days to 

boot the system. Meanwhile, a C/C++ simulation of the system brought the boot time down 

to 24 hours, but this form of verification provided only limited visibility into the internal 

workings of the system. 
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Hardware design and verification

By comparison, an in-system FPGA booted the system in only three seconds. This means 

that the FPGA-based environment can be used to verify the system running under real-time 

workloads; also that this environment can be used as a platform for embedded and 

application software developers to integrate and verify their code in the context of the real 

system. The main problem with the FPGA – when used in a traditional verification 

environment – is lack of visibility with regard to its internal signals and state, including the 

contents of any memories.

Rajda & Kasperek © 2017 Katedra Elektroniki AGH

Aldec - HES
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HES simulation environment

Ext. models
CPU, memory itp.

Behavioral

Testbench

Simulator

H
E

S
 s

im
u

la
to

r 
in

te
rf

a
c
e

DVM

Design

Verification

Manager

Hardware
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HES – hardware – software cosimulation

PCI

PLI, VHPI, itp.

HES  hardware emulation

Project

Software simulator

VHDL

Verilog� Hardware modules on HES board are 

connected with simulator via PCI

interface.

� Logic modules connections are made by 

software links (black lines on a picture). 

� Logic inter  modules connections are 

made also by software links (red lines on 

a picture). 

� All kind connection are simulated: inputs, 

outputs, 3-state and bidirectional.
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HES Incremental development

Total Simulation Time for HES with simulator and Simulator alone

BLOCK
B

BLOCK

A

TESTBENCH

Phase 1

Prepare 

to HES

Phase 4

BLOCK
A

BLOCK
B

BLOCK
C

TESTBENCH

BLOCK
D

Prepare 

to HES

Design-in-simulator 

time factor

Testbench execution 

time factor

Design-in-hardware 

time factor

with HES

alone

BLOCK
A

BLOCK
B

BLOCK
D

BLOCK
C

TESTBENCH

Phase 3

Prepare 

to HES

Phase 2

BLOCK
B

BLOCK
A

BLOCK
C

TESTBENCH

Prepare 

to HES
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HES

• Xilinx

• Virtex V800

• Virtex 2×V2000

• Altera 

• Apex 1000

• Inne układy FPGA
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HES

•Third party boards
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Thank you!
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