

Kierunek EiT, SUM Systemy Wbudowane Zawansowane Zagadnienia Projektowania Systemów Cyfrowych

Multigigabitowe interfejsy szeregowe

Program wykładu

- Aplikacje interfejsów MGT
- Standardy sygnalizacji LVDS, CML, PECL
- Sprzęganie nadajników i odbiorników translacja poziomów, sprzężenie AC/DC
- Architektury systemów zegarowych system/source-synchronous, parallel clock, embedded clock
- Kanały przesyłowe linie transmisyjne PCB, przelotki, złącza, kable
- Jitter

Random/Deterministic, DCD, ISI, Periodic (SSC), inne

- Kompensacja linii transmisyjnych Pre-Emfaza/De-Emfaza, Equalizacja
- Przykłady transceiverów w FPGA Spartan-6 SerDes, Virtex-7 GTX
- Pomiary sonda różnicowa, diagramy oka

Bits[64:57]	its[64:57] Bits[56:45]		Bits[32:21]	Bits[20:9]	Bits[8:1]
Header (8 bits MSB first)	Data 1	Data 2	Data 3	Data 4	ECC
	(12 bits MSB first)	(12 bits MSB first)	(12 bits MSB first)	(12 bits MSB first)	(8 bits MSB first)

DOUT + A

DOUT - A

DOUT + B

DOUT - B

DOUT+C

DOUT-C

) DOUT + D

DOUT – D

CHANNEL A

CHANNEL B

CHANNEL C

CHANNEL D

- 12..14 bitów / 250Msps
- 2 kanały
- 3 szeregowe wyjścia 4+Gbps
- standard JESD204
- multiframe, frame: tail bits (zeros, pseudorandom number sequence or control bits indicating overrange, underrange, or valid data conditions)
- Scrambler (optional, avoids spectral peaks when transmitting similar digital data patterns)
- 8b10b encoder (bit balance)
- 3 fazy:
 - Code Group Synchronization (CGS) comma
 - Initial Lane Alignment Sequence (ILAS) frame alignment

FRAME

ASSEMBLER

(ADD TAIL BITS)

Data Transmission Phase

DATA

FROM

ADC

Standardy sygnalizacji **Sygnalizacja różnicowa**

	Industry Standard	Maximum Data Rate	Output Swing (V _{OD})	Power Consumption	
LVDS	TIA/EIA-644	3.125 Gbps	± 350 mV	Low	
LVPECL	N/A	10+ Gbps	± 800 mV	Medium to High	
CML	N/A	10+ Gbps	± 800 mV	Medium	
M-LVDS	TIA/EIA-899	250 Mbps	± 550 mV	Low	
B-LVDS	N/A	800 Mbps	± 550 mV	Low	

- wyjściowe napięcie wspólne V_{CM} = 1.2V
- duża tolerancja wejściowego V_{CM} (0.2...2.2V) \Rightarrow uniwersalny biorca
- mały swing napięcia ⇒ mały pobór mocy ⇒ także do interf. równoległych

- brak standardu !
- wyjściowe napięcie różnicowe $V_{OD} = 800 m V_{PP}$ (typ.)
- sprzężenie AC ⇒ konieczność kodu o zrównoważonej składowej DC

- wyjściowe $V_{CM} = V_{CC} 1.3V$ (prąd = 14 mA)
- mała impedancja wyjściowa: 4...5Ω
- w zależności od konstrukcji wejścia wymagana zewnętrzna polaryzacja
- sprzężenie AC/DC może dodatkowo wpłynąć na obwód dopasowania

Czynniki wyboru optymalnego rozwiązania:

- Przepustowość
- Kanał: ścieżki, magistrale, kable
- Budżet mocy
- Topologia (point-to-point, multidrop, multipoint)
- Transmisja szeregowa / równoległa
- Dystrybucja sygnału zegara
- Zgodność ze standardami przemysłowymi
- Konieczność/możliwość kondycjonowania (uzdatniania) sygnałów

LVDS:

- powszechny
- mały pobór mocy
- małe EMI
- odporność na zakłócenia
- łatwa możliwość współpracy z innymi sygnalizacjami
- DC...3 Gbps
- 2..3 Gbps: mniejsza moc niż CML
- bufory z pre-emfazą i equalizacją

CML:

- zgodny ze standardami interfejsów (PCIe, SATA, HDMI)
- >3 Gbps
- 2..3 Gbps: mniejszy jitter niż LVDS

LVDS i CML:

 dla długich torów, gdzie wymagane jest uzdatnianie sygnałów

CML driver

LVPECL driver

- symetryzacja przebiegu na wejściu względem V_{BIAS}
 ⇒ redukcja jitteru / polepszenie warunków pracy odbiornika
- eliminacja ew. różnic w threshold
 mogą wystąpić, ponieważ CML i LVPECL nie są standardami
- eliminacja ew. polaryzacji DC między nadajnikiem a odbiornikiem
 pozwala na połączenia między różnymi technologiami
- ochrona przed różnicą potencjału mas
 ⇒ polepsza warunki pracy odbiornika i zwiększa niezawodność
- konieczność zrównoważenia DC danych !

- zrównoważenie DC, gdy w całym strumieniu danych jest jednakowa liczba 0 i 1
- możliwe do osiągnięcia niezależnie od rodzaju danych, po zastosowaniu odpowiedniego kodowania (*scrambling*)
- różne rozwiązania: kod obliczany on-line (funkcje stałe albo ze sprzężeniem liniowym) lub kod look-up-table (8b/10b, 64b/66b)
- stosuje się różne miary, opisujące krótkoterminową odchyłkę od zrównoważenia

- każde 8 bitów transmitowane jest jako 10-bitowy symbol
- kod zrównoważony, różnica liczby bitów (*disparity*) wynosi -2, 0 lub +2
- Running Disparity (RD) różnica liczona na bieżąco, dzięki kodom alternatywnym w każdym momencie mieści się w zakresie -2...+2
- Running Length (RL) maksymalna liczba kolejnych 0 lub 1, tu wynosi 5. Ogranicza to pasmo sygnału od dołu. Podstawowe częstotliwości (minimalna i maksymalna) dla 1Gbps wynoszą odp. 100 i 500 MHz
- dobór pojemności tak, aby zwis impulsu nie przekraczał 3% (0.25dB):

C=(7.8 × Running Length × Bit Period)/R

Mniejsze pojemności łatwiej upakować, większe – mniej zniekształcają sygnał.

Value (Decimal)	Value (Binary)	10-bit Code	Alternative Code		
	HGF EDCBA	abcdei fghj	abcdei fghj		
0	000 00000	100111 0100	011000 1011		
1	000 00001	011011 0100	100010 1011		
2	000 00010	101101 0100	010010 0011		
3	000 00011	110001 1011	110001 0100		
4	000 00100	110101 0100	001010 1011		
5	000 00101	101001 1011	101001 0100		
6	000 00110	011001 1011	011001 0100		
7	000 00111	111000 1011	000111 0100		
8	000 01000	111001 0100	000110 1011		
9	000 01001	100101 1011	100101 0100		
10	000 01010	010101 1011	010101 0100		
1	!	E	:		

Clock CLK1 Device 1 TX DATA RX CLK2 Device 2 RX TX DATA RX CLK2 Device 3 RX

System Synchronous

Source Synchronous

Synchronizm systemu:

- wspólny zegar całego systemu
- < ~50MHz</p>
- konieczność uzgodnienia faz danych
- brak konieczności resynchronizacji danych

Synchronizm źródła:

- lokalne zegary interfejsów
- > ~100MHz
- brak <u>możliwości</u> uzgodnienia faz danych
- konieczność resynchronizacji danych

Zegar równoległy:

- aplikacje serializacji magistral równoległych "dane-adres-sterowanie" (PCI, magistrale procesorów, interfejsy video itp.)
- wiele kanałów transmisyjnych konieczna minimalizacja różnicy opóźnień w poszczególnych kanałach
- ustalona długość ramki

Zegar wpleciony (okresowe zbocze):

- zegar (1 zbocze) + dane w każdej ramce
- synchronizacja automatyczna (*lock to random data*), idealna kiedy nie ma kontroli nad odbiornikiem
- wspólny kanał transmisyjny
- elastyczna długość ramki (np. 10, 12, 16, 24...)
- rozluźnione wymagania dla zegara na F (± 50k PPM) i jitter (~100 ps RMS)

ghj

010

101

Value (Decimal)	Value (Binary)	10-bit Code	Alternate Code		K28.5 Specia Code	
	HGF EDCBA	abcdei fghj	abcdei fghj] [abcdeif	g
0 1 2 3 4 5 6 7 8 9 10 :	000 00000 000 00001 000 00010 000 00011 000 00100 000 00101 000 00110 000 0111 000 01000 000 01001 000 01010 	100111 0100 011011 0100 101101 0100 110001 1011 110101 0100 101001 1011 011001 1011 111000 1011 111000 1011 100101 1011 010101 1011 	011000 1011 100010 1011 010010 1011 110001 0100 001010 1011 101001 0100 011001 0100 000111 0100 000110 1010 000110 1000 010101 0100		0011111 1100000 "Comma"	0

Zegar wpleciony (kodowany):

- mapowanie danych (np. 8b/10b)
- wiele zboczy na każdy kod
- zrównoważona składowa DC
- specjalne kody do synchronizacji (comma)
- wymagania na F (±100 PPM) i jitter (~10 ps RMS)

bonding i obudowa IC, pady lutownicze, przelotki, ścieżki, złącza, kable

Kanały przesyłowe Linie transmisyjne PCB - narzędzie

Conductor	Width (M)	Target 7	liff	Formula Postrictions	Rase Copper Weight	Unite		
10	mils	100	Ohms	0.1 < W/H < 3.0 0.1 < S/H < 3.0	© 0.25oz © 0.5oz	 Imperial Metric 		
Conductor Spacing (S)					0 1.5oz 2oz 2 2oz	Substrate Options		
	1111.5				© 3oz	FR-4 S	TD	
Conductor	Height (H)				© 4oz © 5oz	Er	Ta (°C)	
15	mils				Plating Thickness	4.6	130	
N/H -	0 667			Zdifferential	 Bare PCB 0.5oz 1oz 1.5oz 2oz 	Temp F	Rise (°C)	
S/H = 0.333		100.979 Ohms	© 2.5oz © 3oz	Temp in (°F) = 36.0				
, II - I	0.000			Zo	Differential Layer	Ambien	t Temp (°C)	
				77.504 Ohms	Edge Cpld Ext	2	2	
				+/- Tolerance = 10%	Edge Cpld Int Sym Edge Cpld Int Asym	Temp in	(°F) = 71.6	
					C Edge Cpld Embed			
-	–w—→ ←s–	→		111.077 Ohms	Broad Cpld Shld Broad Cpld NShld	Print	Solve!	
	↓			90.881 Ohms	Information			
					Total Copper Thickness	VIA Ther	mal Resistan	
	SAT		N		Conductor Temperature Temp in (°C) = N/A Temp in (°E) = N/A			

Conductor S	pacing	Conductor Impedance		Conversion Data	Planar Induc	Planar Inductors		PDN Impedance		Thermal
Fusing Curr	rent	Embedded Resistors		PPM Calculator	Crosstalk	Crosstalk Calculator			Wavelength Calculator	
Via Properties	Conduct	tor Properties	Bandwidth & Max Conductor Length		Differential Pairs	Padstack Calculator		ulator	Mechani	cal Information

- do ok. 1GHz efekt naskórkowy (proporcjonalny do pierwiastka z F)
- od ok. 1GHz stratność dielektryka (proporcjonalna do F)

Metody zmniejszania stratności

- zwiększanie rozmiarów
 > wpływ na gęstość upakowania
- dobór dielektryka
 - => wpływ na rozmiary

- elektryczne parametry przelotki zależą od: rozmiarów, stosu PCB oraz materiałów
- odległość między przelotkami w parze wpływa na wzajemne sprzężenie i impedancję różnicową
- metalizacja (via barrel) ma charakter indukcyjny (np. przelotka o małej średnicy ma wypadkowo charakter <u>indukcyjny</u>)
- pozostałe elementy mają charakter pojemnościowy (np. przelotka o dużej średnicy, przechodząca przez wiele warstw zasilania lub masy ma wypadkowy charakter pojemnościowy)

dog-bone

via-in-pad

With Stubs

- pełna: różowy i czerwony
- ślepa: żółty i biały
- rezonans ok. 8 GHz => rozwiercanie nieużywanej części przelotki
- więcej => *Signal Integrity*

100

Stubs removed

- pary z dopasowaną impedancją i kontrolą długości
- często dedykowane złącza masy
- grubość magistrali 2..3mm, średnica otworów > 0.6mm
 ⇒ charakter zdecydowanie pojemnościowy

- stratność (proporcjonalna do F)
 ⇒ zwiększanie średnicy przewodu (ale droższy, cięższy i sztywniejszy)
- przesłuchy (zmniejszają SNR)
 ⇒ ekranowanie każdej pary (folia)
- różnice w długości poszczególnych par powodują różnice w fazie
- <u>złącza kablowe stanowią istotny</u> <u>punkt niedopasowania i przesłuchów</u>

6

6.

ť.

- asymetria pomiędzy czasem narastania i opadania
- przesunięcie poziomu threshold

idealny przebieg wyjściowy

- zniekształcony przebieg wyjściowy
- sygnał zegara (z zaznaczonym dodatnim i ujemnym błędem timingu)
- linia trendu błędu timingu

- odbicia od punktów nieciągłości impedancji
- niedopasowanie

przebieg danych na wyjściu toru

linia trendu błędu timingu

- zjawisko nieskorelowane z danymi
- główne przyczyny: przesłuchy i zakłócenia od przetwornic zasilających
- Spread Spectrum Clocking

- nadmierna pojemność wejściowa
 ⇒ działa podobnie do pojemności przelotek czy konektorów
- przesłuchy

Pomiary amplitudy:

- amplituda oka
- wysokość oka (rozwarcie pionowe)
- amplituda przecięcia oka
- SNR oka
- ...

Pomiary czasu:

- czas UI
- szerokość oka (rozwarcie poziome)
- czas narastania/opadania
- czas przecięcia oka
- jitter
- ...

K28.5

PRBS31

Rajda & Kasperek © 2024 Instytut Elektroniki AGH

gęstość oka

- pre-emfaza w nadajniku
- equalizacja w dowolnym punkcie toru

Pre-Emfaza (PE)

Przesterowanie podczas zmiany wartości wyjścia

De-Emfaza (DE)

Stłumienie wartości ustalonej po zmianie wartości wyjścia

Metody

- stała czasowa (0,5...1,0 UI) ustalona lub nastawiana
- opóźnienie synchroniczne (zależne od zegara w regeneratorze sygnału konieczny odzysk zegara)

 $PE = 20 \times \log 10(A/B): \text{ Transmit } V_{OD} = B$ $DE = 20 \times \log 10(B/A): \text{ Transmit } V_{OD} = A$

Criteria	Pre-Emphasis	De-Emphasis		
Typical signaling technology	LVDS	CML		
Output peak-to-peak amplitude	Increased by PE ratio	Same as without DE		
Power consumption	Higher	Same		
Typical measurements	Positive dB (+3 dB)	Negative dB (-3 dB)		
Receive eye opening	Same as without PE	Reduced by DE ratio		

Kompensacja linii transmisyjnych

Pre-emfaza

DS25BR120 – 3.125 Gbps LVDS Buffer with Transmit Pre-Emphasis

- DC to 3.125Gbps
- 4 levels of transmit pre-emphasis
- on-chip input and output termination 100R
- LVDS, CML, LVPECL inputs
- $V_{CC} = 3.3V / I_{CC} = 35mA$
- small case

3.0 x 3.0 mm footprint

Kompensacja linii transmisyjnych **Pre-emfaza** DS25BR120 – 3.125 Gbps LVDS Buffer with Transmit Pre-Emphasis

2.5 Gbps NRZ PRBS-7 after 40" differential FR-4 stripline V: 125mV/DIV, H: 75ps/DIV

without PE

with PE

1G

10G

100M

freq (Hz)

0.0

10M

Kompensacja linii transmisyjnych

Equalizacja

DS38EP100 – 1 to 5 Gbps Power-Saver Equalizer for Backplanes and Cables

- 1 to 5 Gbps
- no power nor ground
- can be placed enywhere in the datapath
- LVDS, CML, LVPECL
- code independent
- symetric for bi-directional operation
- small case

2.2 x 2.5 mm footprint

Kompensacja linii transmisyjnych **Equalizacja** DS38EP100 – 1 to 5 Gbps Power-Saver Equalizer for Backplanes and Cables

Eye Heigth vs. FR4 Length

Deterministic Jitter vs. FR4 Length

Kompensacja linii transmisyjnych

Equalizacja

DS25BR110 – 3.125 Gbps LVDS Buffer with Receive Equalization

- DC to 3.125Gbps
- 4 levels of receive equalization
- on-chip input and output termination 100R
- out- LVDS, CML, LVPECL inputs
 - $V_{CC} = 3.3V / I_{CC} = 35mA$
 - small case

3.0 x 3.0 mm footprint

Kompensacja linii transmisyjnych **Equalizacja** DS25BR110 – 3.125 Gbps LVDS Buffer with Receive Equalization

2.5 Gbps NRZ PRBS-7 after 70" differential FR-4 stripline V: 100mV/DIV, H: 75ps/DIV

with EQ

Kompensacja linii transmisyjnych Bufor + Equalizacja

DS15BA100 – 1.5 Gbps Differential Buffer with Adjustable Output Voltage DS15EA100 – 1.5 Gbps Adaptive Cable Equalizer with LOS Detection

Features:

- DC/150Mbps to 1.5Gbps
- Single-ended / Differential
- Coaxial / Twin-Ax / Twisted
- LVDS / CML / LVPECL
- 150 + 210 mW
- Space-saving Package

Applications:

- Cable Extention
- Level Translation
- Security Cameras
- Remote Display Panels

Kompensacja linii transmisyjnych Bufor + Equalizacja

DS15BA100 – 1.5 Gbps Differential Buffer with Adjustable Output Voltage DS15EA100 – 1.5 Gbps Adaptive Cable Equalizer with LOS Detection

Figure 3. Cable Extender Chipset Connection Diagram for 100Ω Differential Cables

Kompensacja linii transmisyjnych Bufor + Equalizacja

DS15BA100 – 1.5 Gbps Differential Buffer with Adjustable Output Voltage DS15EA100 – 1.5 Gbps Adaptive Cable Equalizer with LOS Detection

54

Xilinx Spartan-6

Table 10: Differential I/O Standard DC Input and Output Levels

	V _{ID}		VICM		V _{OD}		Vo	CM
I/O Standard	mV, Min	mV, Max	V, Min	V, Max	mV, Min	mV, Max	V, Min	V, Max
LVDS_33 ⁽²⁾⁽³⁾	100	600	0.3	2.35	247	454	1.125	1.375
LVDS_25 ⁽²⁾⁽³⁾	100	600	0.3	2.35	247	454	1.125	1.375

Table 4: DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Тур	Max	Units
C _{IN} ⁽¹⁾	Die input capacitance at the pad	-	-	10	pF

Notes:

1. The CIN measurement represents the die capacitance at the pad, not including the package.

DS25BR110 3.125 Gbps LVDS Buffer with Receive Equalization

	Parameter	Test Conditions	Min	Тур	Мах	Units		
LVDS INPUT DC SPECIFICATIONS (IN+, IN-)								
V _{TH}	Differential Input High Threshold	V _{CM} = +0.05V or V _{CC} -0.05V		0	+100	m∨		
V _{TL}	Differential Input Low Threshold		-100	0		mV		
CIN	Input Capacitance	Any LVDS Input Pin to GND		1.7		pF		

- do x4 pojedynczo
- do x8 w kaskadzie
- SDR albo DDR
- single / differential
- master / slave
- bitslip
- B/C/D stage outputs

- IODELAY: 256 taps × ~30ps
- brak kompensacji temperaturowej
- kalibracja nastaw IODELAY stosownie do UI
- bezstratna rekalibracja podczas pracy (master ⇒ slave)

Interfejsy multimegabitowe Spartan-6 ISerDes/OSerDes – przykład

3-stage delay trimming:

- fine-grain (~40ps step over 0.5ns range) bit alignment
- mid-grain (1ns step over 4ns range bitslip) nibble alignment
- coarse-grain (4ns step over 64ns range nibbleslip) frame alignment

2 subsequent training patterns:

- short (4 bits) "1000" pattern for fine & mid grain
- long (64 bits) "1 + 63 0s" pattern for coarse grain
- 1 ns data window receiver data sampling finetuned automatically
 - fine-grain IODEALY sampling phase tracing procedure
 - fine-grain IODELAY recalibration procedure
- PRBS (Pseudo Random Bit Sequence) for testing purposes

Tektronix TDP1500 1.5GHz Differential Probe

- pasmo DC...1.5GHz
- wzmocnienie 1x/10x
- zakres 850mV/8.5V
- różnicowa rezystancja wejściowa 200kΩ
- różnicowa pojemność wejściowa <1pF
- CMRR:
 >30dB @1GHz (1x)
 >18dB (10x)
- automatyczne skalowanie jednostek na wyświetlaczu oscyloskopu

- 500Mbps...12,5Gbps
- CML *drivers/buffers*
- TX emphasis
- RX equalization
- odzyskiwanie zegara
- korekcja zegara
- koder/dekoder
 8B/10B, 64B/66B, 64B/67B
- comma alignment
- channel bonding
- PRBS
- standardy:
 - PCI Express 1.1/2.0/3.0
 - XAUI, XLAUI, CAUI (fast ETH)
 - CPRI/OBSAI (mobile telecom)
 - SATA Gen.1/2/3
 - inne...

- PCS (Physical Coding Sublayer)
- PMA (Physical Medium Attachment Sublayer)
- 3..4 domeny zegarowe

- FPGA TX Interface: 16/32/64 bit
- 8b/10b Encoder
- TX Gearbox: 64b/66b i 64b/67b
- Pattern Generator: PRBS-7/15/23/31
- TX Buffer / TX Phase Alignment
- PCIe/SATA Out-Of-Band signalling
- Polarity
- PISO
- Pre(0..6dB)/Post(0..12dB) Emphasis
- TX Driver (250..1000mV)

Interfejsy multigigabitowe Virtex-7 GTX (nadajnik) - dystrybucja zegarów

Rajda & Kasperek © 2024 Instytut Elektroniki AGH

AGH

Interfejsy multigigabitowe Virtex-7 GTX (odbiornik)

- PMA (Physical Medium Attachment Sublayer)
- PCS (Physical Coding Sublayer)
- 2 domeny zegarowe

- Analog Front End
- Clock / Data Recovery

E₀

- RX Equalizer (LPM mode)
- RX Equalizer (DFE mode)

RX

EQ

RX OOB

DFE

RX CDR

Interfejsy multigigabitowe Virtex-7 GTX (odbiornik) – dystrybucja zegarów

Interfejsy multigigabitowe 7Series MGT (IPcore wizard)

- 23 - Re-customize IP Re-customize IP Re-customize IP Re-customize IP Re-customize IP 7 Series FPGAs Transceivers Wizard (3.6) 7 Series FPGAs 7 Series FPGAs 7 Series FPGAs 7 Series FPGAs 4 Bocumentation Bocumentation Bocumentation Bocumentation 🛅 Bocumentation 📄 IP Location 🗔 Switch to Defaults Component Name abbotp Component Name abb Component Name ab Component Name abb Component Name abbo **GT** Selection GT Selection GT Selection GT Selection Li GT Selection Line Rate, RefClk Selection Encoding and Clocking Comma Alignment and Equalization PCIe, SATA, PRBS CB and CC Sequence Summary Shared Logic TX **RXCOMMA Alignmen** Summary Protocol Start from Select whether GT RX COMMA de Features TX External Data reset logic ar Protocol File Start_from_scratch Encoding TX Line Rate(Gbps) 6,250 Line Rate (Gt Use () Include TX reference clock(MHz) 125.000 Internal Data Encoding 8B/10B Reference Cl V Dec Include : TX Internal Data width 20 TX External Data width 16 Use DRP DRP Con at row Bottom Ro 312.5 TXUSRCLK(MHz) Shared Logic Overvi **Optional Ports** TXUSRCLK2(MHz) 312.5 **Optional Ports** TX Buffer Enabled false Include Shar 6,250 - For users w TXBYPAS RX Line Rate(Gbps) ENP - For users w RX reference clock(MHz) 125.000 **RXCHARI** Decoding 8B/10B RXS RX Internal Data width 20 RX External Data Width 16 Synchronization and RXUSRCI K(MHz) 312.5 RXUSRCLK2(MHz) 312.5 TX Co Termination and Equ **RX** Buffer Enabled false .EFCLK1_Q0 Ena Differential Sw **RX** Equalizatio TX Buffe .EFCLK0_Q0 TXUSRC Mode TXOUTC Automati **Optional Ports Optional Ports** TXP TXF RX RXP RXI TXP OK Cancel

Interfejsy multigigabitowe Virtex-6 GTX (przykład)

Rajda & Kasperek © 2024 Instytut Elektroniki AGH

Pomiary – Eye Scan / ChipScope Pro Analyzer MGT / BERT Settings

MGT/BERT Settings DRP Se		ttings Port Settings		RX Margin Analysis			
• MCT Cottingo		GIX_XUY8			GIV_YOLA		
e mor settings							
 MGT Alias 		GTX0_117		GTX1_117			
- Tile Location		GTX_X0Y8		GTX_X0Y9			
- MGT Link Status		10.0 Gbps		0.0 Mbps			
- PLL Status		QPLL LOCKED		QPLL LOCKED			
- Loopback Mode		Near-End	PMA	-	Near-End P	CS	-
 Channel Reset 		Reset			Reset		
- TX/RX Reset		TX Reset RX Reset		TX Reset RX Reset		set	
- TX Polarity Invert							
- TX Error Inject		Inject		Inject			
- TX Diff Output Swing		850 mV (1100) 🛛 💌		850 mV (1100) 🛛 👻			
- TX Pre-Cursor		1.67 dB (00111) 💌		1.67 dB (00111) 💌			
- TX Post-Cursor		0.68 dB (00011)		0.68 dB (00011) 🔍			
 RX Polarity Invert 							
- RX Termination M	 RX Termination Mode 		Programmable 💌		Programmable 💌		
RX Termination Voltage		900 mV 💌			900 mV 💌		

MGT/BERT Settings DRP Set	ettings Port Settings	RX Margin Analysis	
	GTX_X0Y8	GTX_X0Y9	
•- MGT Settings			
• BERT Settings			
- TX Data Pattern	PRBS 31-bit	PRBS 31-bit	
- RX Data Pattern	PRBS 31-bit	PRBS 31-bit	
- RX Bit Error Ratio	3.875E-013	2.614E-002	
- RX Received Bit Count	2.581E012	1.194E013	
- RX Bit Error Count	0.000E000	3.121E011	
BERT Reset	Reset	Reset	
P Clocking Settings			
- TXUSRCLK Freq (MHz)	250.04	31.29	
- TXUSRCLK2 Freq (MHz)	250.04	31.29	
- RXUSRCLK Freq (MHz)	250.04	31.29	
RXUSRCLK2 Freq (MHz)	250.04	31.29	

Pomiary – Eye Scan / ChipScope Pro Analyzer RX Margin Analysis

of Values Parameter Name Start Value End Value 850 mV (1100) 850 mV (1100) TX Diff Swina • Ŧ 1 0.00 dB (00000) 0.00 dB (00000) TX Pre-Cursor Ŧ Ŧ 1 0.00 dB (00000) 0.00 dB (00000) TX Post-Cursor • ¥ 1 Scan Settings -Scan Algorithm Horizontal Vertical Range -32 (-0.500 UI) to 32 (0.500 UI) Range -126 to 126 2D Full Eye 💌 Increment 1 Ŧ Increment 2 Ŧ

Rajda & Kasperek © 2024 Instytut Elektroniki AGH

- Texas Instruments: LVDS Owner's Manual
- Maxim: Introduction to LVDS, PECL and CML Application Note HFAN-1.0
- Texas Instruments: Interfacing Between LVPECL, VML, CML, and LVDS Levels, Application Report SLLA120
- Mentor Graphics, **Understanding Via Effects**, whitepaper
- Mentor Graphics, **BGA Fanout Patterns**, technical conference course

